设某棵二叉树的中序遍历序列为ABCD,前序遍历序列为CABD,则

题目

设某棵二叉树的中序遍历序列为ABCD,前序遍历序列为CABD,则后序遍历该二叉树得到序列为()。

  • A、BADC
  • B、BCDA
  • C、CDAB
  • D、CBDA
如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

● 已知一个二叉树的先序遍历序列为①、②、③、④、⑤,中序遍历序列为②、①、④、③、⑤,则该二叉树的后序遍历序列为 (57) 。对于任意一棵二叉树,叙述错误的是 (58) 。

(57)A. ②、③、①、⑤、④

B. ①、②、③、④、⑤

C. ②、④、⑤、③、①

D. ④、⑤、③、②、①

(58)A. 由其后序遍历序列和中序遍历序列可以构造该二叉树的先序遍历序列

B. 由其先序遍历序列和后序遍历序列可以构造该二叉树的中序遍历序列

C. 由其层序遍历序列和中序遍历序列可以构造该二叉树的先序遍历序列

D. 由其层序遍历序列和中序遍历序列不能构造该二叉树的后序遍历序列


正确答案:C,B
试题(57)、(58)分析
  本题考查数据结构基础知识。
  遍历运算是二叉树的基本运算,主要有先序、中序、后序和层序遍历。
  先序遍历的基本方法:对于非空二叉树,先访问根结点,然后先序遍历根的左子树,最后先序遍历根的右子树。因此,若已知某二叉树的先序遍历序列,则可直接得到其树根结点。
  中序遍历的基本方法:对于非空二叉树,先中序遍历根的左子树,然后访问根结点,最后中序遍历根的右子树。因此,若已知某二叉树的根结点,则一可根据中序遍历序列将该二叉树左右子树上的结点划分开。
  后序遍历的基本方法:对于非空二叉树,首先后序遍历根的左子树,接着后序遍历根的右子树,最后访问根结点。因此,若已知某二叉树的后序遍历序列,则可直接得到其树根结点。
  题中给出的先序遍历序列为①、②、③、④、⑤,可知树根结点是①,据此再结合中序遍历序列②、①、④、③、⑤,可知②是根结点①左子树上的结点,由于是左子树上唯一的一个结点,因此②是根结点①的左孩子。对于右子树上的结点④、③、⑤,因右子树的先序遍历序列为③、④、⑤,因此③是根结点①的右孩子。依此类推,可知④是结点③的左孩子,⑤是结点③的右孩子。该二叉树如下图所示。

 
  从二叉树的遍历过程可知,从先序遍历序列和后序遍历序列中无法将左子树和右子树上的结点区分开,因此,由某棵二叉树的先序遍历序列和后序遍历序列不能构造出该二叉树的中序遍历序列。
  层序遍历二叉树的方法:设二叉树的根结点所在层数为1,则层序遍历二叉树的操作定义为从树的根结点出发,首先访问第一层的结点(根结点),然后从左到右依次访问第二层上的结点,接着是第三层上的结点,依此类推,自上而下、自左至右逐层访问树中各层上的结点。

 

第2题:

某二叉树的中序遍历序列为CBADE,后序遍历序列为CBEDA,则前序遍历序列为()。

A.ABCDE

B.CBEDA

C.CBADE

D.EDCBA


正确答案:A

第3题:

●若一棵二叉树的后序遍历序列为DGJHEBIFCA,中序遍历序列为DBGEHJACIF,则其前序遍历序列为 (38) 。

(38) A.ABDEGHJFIC

B.ABDEGHJCFI

C.ABCDEFGHIJ

D.ABDEGJHCFI


正确答案:B
【解析】 后序遍历序列最后一个节点是A,所以其根节点为A;再看其中序遍历序列,A可将序列分为2部分,前半部分为其左子树,后半部分为右子树。不断对其子树施以同样的方法,直至子树为一个节点。于是得到整个树的结构,对树进行前序遍历即得到本题结果。

第4题:

若二叉树的先序遍历序列为ABDECF,中序遍历序列为DBEAFC,则其后序遍历序列为(8)。

A.DEBAFC

B.DEFBCA

C.DEBCFA

D.DEBFCA


正确答案:D
解析:本题要求根据二叉树的先序遍历和中序遍历求后序遍历。我们可以根据这棵二叉树的先序和中序遍历画出这棵二叉树,然后再得出其后序遍历结果。根据先序和中序来构造二叉树的规则是这样的:首先看先序遍历序列ABDECF,先序遍历中第一个访问的结点是A,这说明A是二叉树的根结点(因为先序遍历顺序是:根,左,右)。然后看中序遍历序列DBEAFC,中序中A前面有结点DBE,后面有结点FC。这说明DBE是A的左子树,FC是A的右子树(因为中序遍历顺序是:左,根,右)。再回到先序遍历序列中看DBE的排列顺序(此时可以不看其他的结点),我们发现在先序遍历序列中B排在最前面,所以B是A的左子树的根结点。接下来又回到了中序遍历序列,中序遍历序列中D在B的前面,E在B的后面,所以D是B的左子树,E是B的右子树。对于A的右子树,可同样依此规则得出。由此,可构造二叉树,如图4-8所示。然后对这棵二叉树进行后序遍历,得到DEBFCA。

第5题:

已知某二叉树的前序遍历序列为ABCDEFG,中序遍历序列为CBDAFEG,其后序遍历序列为()。

A、CDBFGEA

B、CBDFGEA

C、CBDFGAE

D、CDBGFAE


参考答案:A

第6题:

某二叉树的后序遍历序列与中序遍历序列相同,均为ABCDEF,则前序遍历序列为()。

A.FEDCBA

B.CBAFED

C.DEFCBA

D.ABCDEF


正确答案:A

第7题:

已知一个二叉树的先序遍历序列为①、②、③、④、⑤,中序遍历序列为②、①、④、③、⑤,则该二叉树的后序遍历序列为( )。对于任意一棵二叉树,叙述错误的是( )。

A.②、③、①、⑤、④

B.①、②、③、④、⑤

C.②、④、⑤、③、①

D.④、⑤、③、②、①


正确答案:C
解析:本题根据题意先序遍历为1,2,3,4,5;中序遍历为2,1,4,3,5,可推算出后序遍历为2,4,5,3,l。由二叉树的先序遍历和后序遍历无法推}}{构造该二叉树的中序遍历。

第8题:

设一棵二叉树的中序遍历结果为DBEACF,前序遍历结果为ABDECF,则后序遍历结果为________。


正确答案:
DEBFCA【分析】我们可以根据前序遍历的结果ABDECF,确定第l个元素A是根结点,再看中序遍历的结果DBEACF,A前面的DBE应该在左子树,A后面的FC应该在右子树。根据前序遍历的结果和中序遍历的结果,我们可以推导出:A是根结点,B是A的左结点,D是B的左结点,E是B的右结点.C是A的右结点,F是C的右结点,画出的二叉树如图1.17所示。对图进行后序遍历的结果为DEBFCA。
总结:先根据前序遍历或后序遍历的结果,确定根结点,根据根结点确定左右予树上的结点,再根据两种遍历画出对应的二叉树,最后遍历二叉树得到第三种遍历结果。

第9题:

某二叉树的前序遍历序列为abdgcefh,中序遍历序列为dgbaechf,则其后序遍历序列为()。

Abdgecefha

Bgdbecfha

Cbdgaechf

Dgdbehfca


参考答案:D

第10题:

一棵二叉树的先序遍历序列为ABCDEF,中序遍历序列为CBAEDF,则后序遍历序列为()。

A.CBEFDA

B.FEDCBA

C.CBEDFA

D.不确定


参考答案:A