n阶实对称矩阵A为正定矩阵,则下列不成立的是()。A、所有k级子式为正(k=1,2,…,n)B、A的所有特征值非负C、秩(A)=n

题目

n阶实对称矩阵A为正定矩阵,则下列不成立的是()。

  • A、所有k级子式为正(k=1,2,…,n)
  • B、A的所有特征值非负
  • C、秩(A)=n
参考答案和解析
正确答案:A
如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是( ).

A.二次型xTAx的负惯性指数零

B.存在n阶矩阵C,使得A=CTC

C.A没有负特征值

D.A与单位矩阵合同


参考答案:

第2题:

设A是n阶实对称矩阵,则A有n个()特征值.


参考答案:实

第3题:

n阶对称矩阵A正定的充分必要条件是()。

A、|A|0

B、存在n阶方阵C使A=CTC

C、负惯性指标为零

D、各阶顺序主子式均为正数


参考答案:D

第4题:

设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,


答案:
解析:

第5题:

设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.


答案:
解析:

第6题:

设A为n阶实对称矩阵,则().

A.A的n个特征向量两两正交

B.A的n个特征向量组成单位正交向量组

C.A的k重特征值λ0,有r(λ0E-A)=n-k

D.A的k重特征值λ。,有r(λ0E-A)=k


参考答案:

第7题:

设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,


答案:
解析:

第8题:

n阶对称矩阵A为正定矩阵的充分必要条件是()。

A、∣A∣0

B、存在n阶矩阵P,使得A=PTP

C、负惯性指数为0

D、各阶顺序主子式均为正数


参考答案:D

第9题:

设A,B为n阶正定矩阵.证明:A+B为正定矩阵.


答案:
解析:

第10题:

设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则



A.A秩r(A)=m,秩r(B)=m
B.秩r(A)=m,秩r(B)=n
C.秩r(A)=n,秩r(B)=m
D.秩r(A)=n,秩r(B)=n

答案:A
解析:
本题考的是矩阵秩的概念和公式.因为AB=E是m阶单位矩阵,知r(AB)=m.又因r(AB)≤min(r(A),r(B)),故m≤r(A),m≤r(B). ①另一方面,A是m×n矩阵,B是n×m矩阵,又有r(A)≤m,r(B)≤m. ②比较①、②得r(A)=m,r(B)=m.所以选(A)