若z=f(x,y)在点(x0,y0)处可微,则在点(x0,y0)处,下列结论不正确的是()A、连续B、偏导数存在C、偏导数连续D、切平面存在

题目

若z=f(x,y)在点(x0,y0)处可微,则在点(x0,y0)处,下列结论不正确的是()

  • A、连续
  • B、偏导数存在
  • C、偏导数连续
  • D、切平面存在
如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

下列命题正确的是()

A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
D.若函数f(x)在点x0处连续,则f'(x0)一定存在

答案:C
解析:
根据函数在点x0处取极值的必要条件的定理,可知选项C是正确的.

第2题:

若函数z=f(x,y)在点P0(x0,y0)处可微,则下面结论中错误的是(  )。



答案:D
解析:
二元函数z=f(x,y)在点(x0,y0)处可微,可得到如下结论:①函数在点(x0,y0)处的偏导数一定存在,C项正确;②函数在点(x0,y0)处一定连续,AB两项正确;可微,可推出一阶偏导存在,但一阶偏导存在不一定一阶偏导在P0点连续,也有可能是可去或跳跃间断点,故D项错误。

第3题:

以下结论正确的是()。

A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.

B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.

C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.

D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.


参考答案:C

第4题:

z=(x,y)在P0(x0,y0)一阶偏导数存在是该函数在此点可微的什么条件?

A.必要条件
B.充分条件
C.充要条件
D.无关条件

答案:A
解析:
提示:函数在P0(x0,y0)可微,则在该点偏导一定存在。

第5题:

函数f(x,y)在点P0(x0,y0)处有一阶偏导数是函数在该点连续的(  )。

A、必要条件
B、充分条件
C、充分必要条件
D、既非充分又非必要条件

答案:D
解析:

第6题:

下列结论正确的是( ).

A.x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件
B.z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件
C.z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件
D.z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件

答案:D
解析:
由z=f(x,y)在点(x,y)可微分的定义知,函数在一点可微分必定函数在该点连续, 故D正确.

第7题:

函数f(x,y)在点P0(x0,y0)处的一阶偏导数存在是该函数在此点可微分的(  )。

A. 必要条件
B. 充分条件
C. 充分必要条件
D. 既非充分条件也非必要条件

答案:A
解析:
函数f(x,y)在P0(x0,y0)可微,则f(x,y)在P0(x0,y0)的偏导数一定存在。反之,偏导数存在不一定能推出函数在该点可微。举例如下:
函数



在点(0,0)处有fx(0,0)=0,fy(0,0)=0,但函数f(x,y)在(0,0)处不可微。因此,函数f(x,y)在点P0(x0,y0)处的一阶偏导数存在是该函数在此点可微分的必要条件。

第8题:

函数z=f(x,y)在点(x0,y0)处连续是z=f(x,y)在点(x0,y0)处存在一阶偏导数的(58)。

A.充分条件

B.必要条件

C.充要条件

D.既非充分,又非必要条件


正确答案:D
解析:多元函数可微、偏导数存在、偏导数连续和函数连续之间的关系:偏导数连续→函数可微偏导数存在函数连续;函数连续偏导数存在。

第9题:

z=f(x,y)在P0(x0,y0)一阶偏导数存在是该函数在此点可微的什么条件?

A.必要条件
B.充分条件
C.充要条件
D.无关条件

答案:B
解析:
提示 函数在P0(x0,y0)可微,则在该点偏导一定存在。

第10题:

若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微


正确答案:错误

更多相关问题