若线性规划问题有可行解,则一定存在基本可行解。

题目
判断题
若线性规划问题有可行解,则一定存在基本可行解。
A

B

如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

若线性规划问题有可行解,则一定存在基本可行解。()


参考答案:正确

第2题:

下列说法正确的为() 。

A.如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解

B.如果线性规划的对偶问题无可行解,则原问题也一定无可行解

C.在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目 标函数值都一定不超过其对偶问题可行解的目标函数

D.如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解


答案:D

解析:

应该选D,由弱对偶性的推论 :如果原问题有可行解,且目标函数值无界,即具有无界解时,其对偶问题无可行解。


第3题:

解是线性规划的基本解但不满足约束条件,则该问题一定不会()。

A、无解

B、无可行基解

C、存在至少一个解

D、无最优可行基解


参考答案:C

第4题:

互为对偶的两个线性规划问题的解存在关系( )

A.原问题无可行解,对偶问题也无可行解
B.对偶问题有可行解,原问题可能无可行解
C.若最优解存在,则最优解相同
D.一个问题无可行解,则另一个问题具有无界解

答案:B
解析:

第5题:

线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是( )。

A.线性规划问题的可行解区一定存在B.如果可行解区存在,则一定有界C.如果可行解区存在但无界,则一定不存在最优解D.如果最优解存在,则一定会在可行解区的某个顶点处达到


正确答案:D

第6题:

用图解法求解一个关于最大利润的线性规划问题时,若其等利润线与可行解区域相交,但不存在可行解区域最边缘的等利润线,则该线性规划问题( )。

A 、有无穷多个最优解

B 、有可行解但无最优解

C 、有可行解且有最优解

D 、无可行解


参考答案B

第7题:

若线性规划存在可行基,则_______。

A、一定有最优解

B、一定有可行解

C、可能无可行解

D、以上结论都不对


参考答案:B

第8题:

互相对偶的两个线性规划问题,若其中一个无可行解,则另一个必定()

A、无可行解

B、有可行解,也可能无可行解

C、有最优解

D、有可行解


参考答案:B

第9题:

用图解法求解一个关于最大利润的线性规划问题时,若其等利润线与可行解区域相交,但不存在可行解区域最边缘的等利润线,则该线性规划问题( )。

A.有无穷多个最优解
B.有可行解但无最优解
C.有可行解且有最优解
D.无可行解

答案:B
解析:

第10题:

关于线性规划的原问题和对偶问题,下列说法正确的是()

  • A、若原问题为无界解,则对偶问题也为无界解
  • B、若原问题无可行解,其对偶问题具有无界解或无可行解
  • C、若原问题存在可行解,其对偶问题必存在可行解
  • D、若原问题存在可行解,其对偶问题无可行解

正确答案:B

更多相关问题