设在区间(-∞,+∞)内函数f(x)>0,且当k为大于0的常数时有f(x+k)=1/f(x)则在区间(-∞,+∞)内函数

题目
单选题
设在区间(-∞,+∞)内函数f(x)>0,且当k为大于0的常数时有f(x+k)=1/f(x)则在区间(-∞,+∞)内函数f(x)是(  )。
A

奇函数

B

偶函数

C

周期函数

D

单调函数

如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )。

A.(x-a)[f(x)-f(a)]≥0
B.(x-a)[f(x)-f(a)]≤0
C.
D.

答案:C
解析:

第2题:

设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0,
则在(- ∞ ,0)内必有:
(A) f ' > 0, f '' > 0 (B) f ' 0
(C) f ' > 0, f ''


答案:B
解析:
解:选 B。
偶函数的导数是奇函数,奇函数的导数是偶函数。
f (x)是偶函数,则 f '(x)是奇函数,当x > 0时, f '(x) > 0,则x f '(x)是奇函数,则 f ''(x)是奇函数,当x > 0时, f '(x) > 0,则x 0;
点评:偶函数的导数是奇函数,奇函数的导数是偶函数。

第3题:

设R(t)表示可靠度函数,F(t)表示累积故障分布函数,则以下描述正确的是( )。

A.R(t)是[0,∞)区间内的非减函数,且0≤R(t)≤1

B.R(t)是[0,∞]区间内的非增函数,且0≤R(t)≤l

C.在(0,∞)区间内,R(t)+F(t)=l

D.F(t)在[0,∞]区间内的非减函数,且0≤F(t)≤1

E.F(t)在[0,∞]区间内的非增函数


正确答案:BCD

第4题:

设函数f(x)在区间[0,1]上具有2阶导数,且,证明:
  (Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;
  (Ⅱ)方程在区间(0,1)内至少存在两个不同实根.


答案:
解析:

第5题:

函数f(x)的导函数f'(x)的图像如右图所示,则在(-∞,+∞)内f(x)的单调递增区间是()

A.(-∞,0)
B.(-∞,1)
C.(0,+∞)
D.(1,+∞)

答案:B
解析:
因为x在(-∞,1)上,f'(x)>0,f(x)单调增加,故选B.

第6题:

设函数f(x)在(-∞,+∞)上是奇函数,在(0,+∞)内有f'(x)<0, f''(x)>0,则在(-∞,0)内必有:
A. f'>0, f''>0 B.f'<0, f''<0
C. f'<0, f''>0 D. f'>0, f''<0


答案:B
解析:
提示:已知f(x)在(-∞,+∞)上是奇函数,图形关于原点对称,由已知条件f(x)在(0,+∞),f'<0单减, f''>0凹向,即f(x)在(0,+∞)画出的图形为凹减,从而可推出关于原点对称的函数在(-∞,0)应为凸减,因而f'<0, f''<0。

第7题:

设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:
A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0
C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0


答案:B
解析:
提示:已知f(x)在(-∞,+∞)上是偶函数,函数图像关于y轴对称,已知函数在(0,+∞),f'(x)>0, f''(x)>0,表明在(0,+∞)上函数图像为单增且凹向,由对称性可知,f(x)在(-∞,0)单减且凹向,所以f'(x)<0, f''(x)>0。

第8题:

设R(t)表示可靠度函数,F(t)表示累积故障分布函数,则下列表述正确的有( )。

A.R(t)是[0,∞)区间内的非减函数,且0≤R(t)≤1

B.R(t)是[0,∞)区间内的非增函数,且0≤R(t)≤1

C.在[0,∞)区间内,R(t)+F(t)=1

D.F(t)在[0,∞)区间内的非减函数,且0≤F(t)≤1

E.F(t)在[0,∞)区间内是非增函数


正确答案:BCD
解析:可靠度R(t)随时间推移越来越低,是[0,∞)区间内的非增函数,且0≤R(t)≤1;而F(t)是[0,∞)区间内的非减函数,且0≤F(t)≤1;在[0,∞)区间内,R(t)+F(t)=1。

第9题:

设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上



A.A当f'(x)≥0时,f(x)≥g(x)
B.当f'(x)≥0时,f(x)≤g(x)
C.当f"(x)≥0时,f(x)≥g(x)
D.当f"(x)≥0时,f(x)≤g(x)

答案:D
解析:
由于g(0)=f(0),g(1)=f(1),则直线y=f(0)(1-x)+f(1)x过点(0,f(0))和(1,f(1)),当f"(x)≥0时,曲线y=f(x)在区间[0,1]上是凹的,曲线y=f(x)应位于过两个端点(0,f(0))和(1,f(1))的弦y=f(0)(1-x)+f(1)x的下方,即f(x)≤g(x)故应选(D).
(方法二)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,
则 F'(x)=f'(x)+f(0)-f(1),F"(x)=f"(x).当f"(x)≥0时,F"(x)≥0,则曲线y=F(x)在区间[0,1]上是凹的.又F(0)=F(1)=0,从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).
(方法三)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,

则 F(x)=f(x)[(1-x)+x]-f(0)(1-x)-f(1)x

=(1-x)[f(x)-f(0)]-x[f(1)-f(x)]
   =x(1-x)f'(ξ)-x(1-x)f'(η) (ξ∈(0,x),η∈(x,1))
   =x(1-x)[f'(ξ)-f'(η)]
  当f"(x)≥0时,f'(x)单调增,f'(ξ)≤f'(η),从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).

第10题:

设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。
A. f'(x)>0,f''(x)>0 B. f(x) 0
C. f'(x)>0,f''(x)


答案:B
解析:
提示:f(x)在(-∞,+∞)上是偶函数,f'(x)在(-∞,+∞)在上是奇函数,f''(x)在(-∞,+∞)在上是偶函数,故应选B。

更多相关问题