设A和B均为n阶矩阵(n>1),m是大于1的整数,则必有(  )。

题目
设A和B均为n阶矩阵(n>1),m是大于1的整数,则必有(  )。

参考答案和解析
答案:C
解析:
本题考查矩阵运算的相关性质。
如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于( )。

A.-A.*
B.A.*
C.(-1)nA.*
D.(-1)n-1A.*

答案:D
解析:
∵A*=|A|A~-1 ∴(-A)*=|-A|(-A)~-1=(-1)~n|A|(-1)~-1A-1 =(-1)~n-1|A|A-1=(-1)~n-1A*

第2题:

设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().

A.r>m
B.r=m
C.rD.r≥m

答案:C
解析:
显然AB为m阶矩阵,r(A)≤n,r(B)≤n,而r(AB)≤min{r(A),r(B)}≤n小于m,所以选(C).

第3题:

某大型整数矩阵用二维整数组 G[1:2M ,l:2N]表示,其中M和N是较大的整数,而且每行从左到右都己是递增排序,每到从上到下也都己是递增排序。元素G[M,N]将该矩阵划分为四个子矩阵A[1:M,1:N],B[1:M,(N+1):2N],C[(M+1):2M,1:N ],D[(M+1):2M,(N+1):2N]。如果某个整数E大于A[M,N],则E( )。

A.只可能在子矩阵A中B.只可能在子矩阵B或C中C.只可能在子矩阵B、C或D中D.只可能在子矩阵D中


正确答案:C

第4题:

设A、B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足:
A.必有一个等于0 B.都小于n
C. 一个小于n,一个等于n D.都等于n


答案:B
解析:
提示:利用矩阵的秩的相关知识,可知A、B均为n阶非零矩阵,且AB = 0,则有R(A)+ R(B)≤n,而已知为n阶非零矩阵,1≤R(A)≤n,1≤R(B)≤n,所以R(A)、R(B)都小于n。

第5题:

设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C=



A.E
B.-E
C.A
D.-A

答案:A
解析:

第6题:

设A,B是n(n≥2)阶方阵,则必有( ).



答案:C
解析:

第7题:

设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则



答案:C
解析:

第8题:

设A和B均为n阶矩阵,则必有( )。

A.|A+B|=|A|+|B|
B.AB=BA
C.|AB|=|BA|
D.


答案:C
解析:

第9题:

设A、B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足:

A.必有一个等于0
B.都小于n
C. 一个小于n,一个等于n
D.都等于n

答案:B
解析:
提示:利用矩阵的秩的相关知识,可知A、B均为n阶非零矩阵,且AB=0,则有 R(A)+R(B)≤n,而 A、B 已知为 n 阶非零矩阵,1≤R(A)≤n,1≤R(B)≤n,所以 R(A)、 R(B) 都小于n。

第10题:

设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且


答案:
解析: