要求学生略知图形的两个简单性质,这种教学要求属于( )

题目

要求学生略知图形的两个简单性质,这种教学要求属于( )

  • A、直观认识
  • B、初步认识
  • C、认识
  • D、掌握
如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

根据学生个人成绩在该班学生成绩序列中所处的位置来判定其成绩的优劣,而不考虑其是否达到教学目标的要求,这种教学评价属于( )。

A.诊断性
B.绝对性
C.总结性
D.相对性评价

答案:D
解析:
相对性是用常模参照性对学生成绩进行评定,它依据学生个人的成绩在该班学生成绩序列中或常模中所处的位置来评价和决定他的成绩优劣,而不考虑他是否达到教学目标的要求,故相对性评价也称常模参照性评价。

第2题:

在摄影课程上,张老师让学生自主拍摄.发现学生们不知道要拍摄什么主题,于是要求学生们对自己作品先提炼出1—2个词汇,然后再进行有方向的拍摄。这种教学活动属于()。


A.教学实施

B.教学目标

C.教学方法

D.教学准备

答案:C
解析:
教学方法是为了达到特定教学目标,运用语言、文字、形象等传达指令、形成互动、传播知识、引发思维、开展实践所采用的语言、行为、手段、程序和技巧。教学方法选择的依据有教学目标、学生实际特点、教学环境、教师自身素质。题干中,张老师以学生的实际特点为依据选择了适合的教学方法。

第3题:

在心理评估中,向被检者展示简单的几何图形,并要求被检者,以观察其视觉空间能力,这种方法属于

A、会谈法

B、投射法

C、问卷法

D、观察法

E、作业法


参考答案:B

第4题:

教师要求学生根据指定内容独立思考,理解概念,解决问题。这种教学方式是( )

A、合作教学
B、启发教学
C、支持教学
D、发现教学


答案:D
解析:
题干的描述体现了发现教学的内涵。

第5题:

阅读下列材料,根据材料进行简单的教学设计,要求包括教学目标、教学内容、教师活动、学生活动和教学过程。
某初二(2)班学生共40人,其中男生20人,女生20人。
教学内容:弯道跑、推铅球。
器材:铅球。


答案:
解析:
“弯道跑和推铅球”的教学设计

第6题:

选择与运用教学方法的基本依据不包括(  )。


A.教学目的和任务的要求

B.学生特点

C.课程性质和教材特点

D.学校的要求

答案:D
解析:
选择与运用教学方法的基本依据:教学目的和任务的要求;课程性质和教材特点;学生特点;教学时间、设备、条件;教师业务水平、实际经验及个性特点。

第7题:

崔老师在绘画教学中,发现很多学生不敢动笔,于是要求每位同学在一张A4纸上随意进行抽象表现,结果每个学生都非常有信心,十分投入地大胆表现。这种教学活动属于( )。


A.教学目标

B.教学评价

C.教学准备

D.教学方法

答案:D
解析:
教学方法是为了达到特定教学目标,运用语言、文字、形象等传达指令、形成互动、传播知识、引发思维、开展实践所采用的语言、行为、手段、程序和技巧。教学方法选择依据有:教学目标、学生实际特点、教学环境、教师自身素质。题干中崔老师以学生实际特点和教学环境为依据选择了适合的教学方法。

第8题:

选择与运用教学方法的基本依据不包括( )

A.教学目的和任务的要求 B.学生年龄特征
C.课程性质和特点 D.学校的要求


答案:D
解析:
选择与运用教学方法的基本依据:教学目的和任务的要求;课程性质和特点;学生年龄特 征;教学时间、设备、条件;教师业务水平、实际经验及个性特点。

第9题:

“中心对称和中心对称图形”的教学目的主要有①知道中心对称的概念,能说出中心对
称的定义和关于中心对称的两个图形的性质。②会根据关于中心对称图形的性质定理2的逆
定理来判定两个图形关于一点对称;会画与已知图形关于一点成中心对称的图形。此外,通过复习图形轴对称,并与中心对称比较,渗透类比的思想方法;用运动的观点观察和认识图形,渗透旋转变换的思想。
通过题干来完成下列教学设计。
(1)给出本课程的课题引入;
(2)根据教学目标设计教学环节;给出两个实例以进行知识探究。


答案:
解析:
(1)课题引入:(引导性材料)
想一想:怎样的两个图形叫做关于某直线成轴对称 成轴对称的两个图形有什么特点
(帮助学生复习轴对称的有关知识,为中心对称教学作准备)
画一画:如图l(1),已知点P和直线l,画出点P关于直线,的对称点P,;如图l(2),已知线段MN和直线
a.画出线段MN关于直线a的对称线段M’N’。
(通过画图形进一步巩固和加深对轴对称的认识)
上述问题由学生回答.教师作必要的提示.并归纳总结成下表:

观察与思考:图2所示的图形关于某条直线成轴对称吗 如果是,画出对称轴,如果不是,说明理由。

(教师把图2的两个图形制成投影片或教具,学生仔细观察后,能发现这两个图形都不是轴对称。然后,教师适时提出问题:这两个图形能不能重合 怎样才能使这两个图形重合呢 让学生观察、探究、讨论,教师可以直观地演示中心对称变换的过程,让学生发现:把其中一个图形统一特殊点旋转l80度后能与另一个图形重合。)
问题l:你能举出1~2个实例或实物,说明它们也具有上面所说的特性吗
说明:学生自己举例有助于他们感性地认识中心对称的意义。然后,教师指出:具有这种特性的图形叫做中心对称图形,并介绍对称中心,对称点等概念。
问题2:你能给“中心对称”下一个定义吗
说明与建议:学生下定义会有困难,教师应及时修正,并给出明确的定义,然后指出定义中的三个要点:
①有一个对称中心——点;②图形绕中心旋转l80度;③旋转后与另一图形重合。把这三要点填入引导性材料中的空表内,在顶空格内写上“中心对称”字样,以利于写“轴对称”进行比较。
(2)教学环节:
环节l:练一练:在图3中.已知AABC和AEFG关于点0成中心对称,分别找出图中的对称点和对称线段。


说明与建议:教师可演示△ABC绕点0旋转l80度后与△EFG重合的过程,让学生说出点E和点A,点B和点F,点C和点G是对称点;线段AB和EF、线段AC和EG,线段BC和FG都是对称线段。教师还可向学生指出,上图中,点A、0、E在一条直线上,点C、0、G在一条直线上,点8、0、F在一条直线上,且AO=E0,BO=F0,
CO=G0。
问题:从上面的练习及分析中,可以看出关于中心对称的两个图形具有哪些性质
说明与建议:引导学生总结出关于中心对称的两个图形的性质:定理l——关于中心对称的两个图形是全等形;定理2——关于中心对称的两个图形,对称点连线都经过对称中心.并且被对称中心平分。
问题:定理2的题设和结论各是什么 试说出它的逆命题。
说明与建议:学生解答此题有困难,教师要及时引导。特别是叙述命题时,学生常常照搬“对称点”“对称中心”这些词语,教师应指出:由于没有“两个图形关于中心对称”的前提.所以不能使用“对称点”“对称中心”这样的词语,而要改为“对应如”“某一点”。最后,教师应完整地叙述这个逆命题——如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于点对称。
问题:怎样证明这个逆命题是正确的
说明与建议:证明过程应在教师的引导下,师生共同完成。由已知条件——对应点的连线都经过某一点,并且被这一点平分,可以知道:若把其中一个图形绕着这点旋转180度,它必定与另一个图形重合,因此.根据定义可以判定这两个图形关于这一点对称。这个逆命题即为逆定理。根据这个逆定理,可以判定两个图形关于一点对称,也可以画出已知图形关于一点的对称图形。
环节2:练一练:画出图4中,线段PQ关于点D的对称线段PQ’。


(画法如下:(1)连结PD,延长PO到P,使0P'=OP,点P,就是点P关于点0的对称点。(2)连结Q0,延长Q0到Q’,使Q’Q=OQ,点Q’就是点Q的对称点,则PQ’就是线段PQ关于0点的对称线段。教师应指出:画一个图形关于某点的中心对称图形,关键是画“对称点”。比如,画一个三角形关于某点的中心对称三角形,只要画出三角形三个顶点的对称点,就可以画出所要求的三角形。)

第10题:

教师要求学生根据指定内容独立思考,理解概念,解决问题。这种教学方式是( )
A.合作教学 B.启发教学 C.支持教学 D.发现教学


答案:D
解析:
题干的描述体现了发现教学的内涵。

更多相关问题