设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f

题目

设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f"(x)>0,则在(-∞,0)内必有()。

  • A、f'(x)>0,f"(x)>0
  • B、f'(x)<0,f"(x)>0
  • C、f'(x)>O,f"(x)<0
  • D、f'(x)<0,f"(x)<0
如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

设函数y=f(x)在(0,+∞)内有界且可导,则( )。

A.
B.
C.
D.

答案:B
解析:

第2题:

设f(x)是(-a,a)是连续的偶函数,且当0<x<a时,f(x)<f(0),则有结论( )。

A.f(0)是f(x)在(-a,a)的极大值,但不是最大值
B.f(0)是f(x)在(-a,a)的最小值
C.f(0)是f(x)在(-a,a)的极大值,也是最大值
D.f(0)是曲线y=f(x)的拐点的纵坐标

答案:C
解析:

第3题:

若f(x)为(-∞,+∞)上的任意函数,则F(x)=f(x)-f(-x)是()

A、偶函数

B、奇函数

C、非奇非偶函数

D、F(x)≡0


参考答案:B

第4题:

设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0,
则在(- ∞ ,0)内必有:
(A) f ' > 0, f '' > 0 (B) f ' 0
(C) f ' > 0, f ''


答案:B
解析:
解:选 B。
偶函数的导数是奇函数,奇函数的导数是偶函数。
f (x)是偶函数,则 f '(x)是奇函数,当x > 0时, f '(x) > 0,则x f '(x)是奇函数,则 f ''(x)是奇函数,当x > 0时, f '(x) > 0,则x 0;
点评:偶函数的导数是奇函数,奇函数的导数是偶函数。

第5题:

设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )

A.f(a)=0且f′(a)=0
B.f(a)=0且f′(a)≠0
C.f(a)>0且f′(a)>
D.f(a)<0且f′(a)<

答案:B
解析:

第6题:

设f(x)是定义在[-a,a]上的任意函数,则下列答案中哪个函数不是偶函数?

A.f(x)+f(-x)
B.f(x)*f(-x)
C.[f(x)]2
D.f(x2)

答案:C
解析:
提示:利用函数的奇偶性定义来判定。选项A、B、D均满足定义F(-x)=F(x),所以为偶函数,而C不满足,设F(x)= [f(x)]2,F(-x)= [f(-x)]2,因为f(x)是定义在 [-a,a]上的任意函数,f(x)可以是奇函数,也可以是偶函数,也可以是非奇非偶函数,从而推不出F(-x)=F(x)或 F(-x) = -F(x)。

第7题:

设函数f(x)与g(x)在[0,1]上连续,且f(x)≤g(x),且对任何的c∈(0,1)( )


答案:D
解析:

第8题:

设f(x)在(-∞,+∞)上是偶函数,若f'(-x0)=-K≠0,则f(x0)等于:


答案:B
解析:
提示:利用结论“偶函数的导函数为奇函数”计算。
f(-x)=f(x),求导-f'(-x)=f'(x),即f'(-x)=-f'(x)。将x=x0代入,得f'(-x0)=-f'(x0),解出f'(x0)=K。

第9题:

设函数f(x)在(-∞,+∞)上是奇函数,在(0,+∞)内有f'(x)<0, f''(x)>0,则在(-∞,0)内必有:
A. f'>0, f''>0 B.f'<0, f''<0
C. f'<0, f''>0 D. f'>0, f''<0


答案:B
解析:
提示:已知f(x)在(-∞,+∞)上是奇函数,图形关于原点对称,由已知条件f(x)在(0,+∞),f'<0单减, f''>0凹向,即f(x)在(0,+∞)画出的图形为凹减,从而可推出关于原点对称的函数在(-∞,0)应为凸减,因而f'<0, f''<0。

第10题:

设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:
A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0
C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0


答案:B
解析:
提示:已知f(x)在(-∞,+∞)上是偶函数,函数图像关于y轴对称,已知函数在(0,+∞),f'(x)>0, f''(x)>0,表明在(0,+∞)上函数图像为单增且凹向,由对称性可知,f(x)在(-∞,0)单减且凹向,所以f'(x)<0, f''(x)>0。

更多相关问题