简述定点突变技术的主要技术过程及其在酶分子修饰中的应用。

题目
问答题
简述定点突变技术的主要技术过程及其在酶分子修饰中的应用。
如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

简述分子蒸馏技术、膜分离技术及其原理和应用特点。


正确答案: 分子蒸馏技术:是一种特殊的液--液分离技术,它不同于传统蒸馏依靠沸点差分离原理,而是靠不同物质分子运动平均自由程的差别实现分离。当液体混合物沿加热板流动并被加热, 轻、重分子会逸出液面而进入气相,由于轻、重分子的自由程不同,因此,不同物质的分子 从液面逸出后移动距离不同,若能恰当地设置一块冷凝板,则轻分子达到冷凝板被冷凝排出, 而重分子达不到冷凝板沿混合液排出。这样,达到物质分离的目的。
膜分离技术:是指分子在水平上不同粒径分子的混合物在通过半透膜时,实现选择性分离的技术,半透膜又称半透膜或者滤膜,膜壁布满小孔,根据孔径大小可以分为:微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)、反渗透膜(RO)等,膜分离都采用错流过滤方式。

第2题:

何谓易错PCR技术?简述易错PCR技术进行体外基因突变的主要过程


正确答案:指从酶的单一基因出发,在改变反应条件的情况下进行PCR,使扩增得到的基因出现碱基配对错误,从而引起基因突变的技术过程。
过程:双链DNA的变性、引物与单链DNA退火结合、引物延伸。

第3题:

简述微滤技术的原理及其在水处理中应用?


正确答案: 微滤是以压力差为推动力,利用筛网装过滤介质膜的“筛分”作用进行分离的膜过程,其原理与过滤类似,但其过滤的微粒粒径在0.05~15um之间,主要去除微粒、亚微粒和细粒物质,因此又称为精密过滤。
微滤膜的材质主要有:醋酸纤维、硝酸纤维、混合纤维、聚酰胺、聚氯乙烯以及陶瓷等材料。组件有板框式、管式、卷式和中空纤维式几种。
目前微滤技术已广泛应用于化工、冶金、食品、医药、生化和水处理等多个行业,在水处理领域,微滤主要作用包括以下几个方面:作为纯水、超纯水制备的与处理单元;用于生产矿泉水;用于城市污水的深度处理,用于含油废水的处理;还可以与生物反应器一起构成微滤膜生物反应器,用于处理生活污水并实现污水再生利用。

第4题:

简述点突变技术的主要技术过程及其在酶分子修饰中的作用。


正确答案:新的酶分子结构的设计、突变基因碱基序列的确定、突变基因的获得、新酶的获得。

第5题:

定点突变技术在酶分子修饰中有何应用?


正确答案:定义:指在DNA序列中的某一特定位点上进行碱基的改变从而获得突变基因的操作技术。是蛋白质工程和酶分子组成单位置换修饰中常用的技术。应用:新的酶分子结构的设计;突变基因碱基序列的确定;突变基因的获得;新酶的获得。

第6题:

简述核糖核酸酶切技术分析基因突变的基本原理及其优、缺点。


正确答案: 核糖核酸酶切分析(RNase cleavage)的基本原理是在一定条件下,异源双链核酸分子RNA:RNA或RNA:DNA中的错配碱基可被核糖核酸酶RNase识别并切割;利用含SP6或T7噬菌体启动子的质粒,在体外合成与野生型DNA或RNA互补的标记RNA探针,将其与待检核酸样品杂交后再用RNase处理,形成的异源双链核酸分子如有单碱基错配,会被RNase识别切割,通过分析酶切片段数量及大小可检出有无突变及点突变位置。
优点:一步反应确定突变在片段中的位置,不使用有害化学试剂。
缺点:突变检出率不高,因为错配为嘌呤碱基时RNase的切割效率低下,即使同时检测正、反义两条链,检出率也只能达到70%,且需要制备特异性RNA探针。

第7题:

定点突变技术在酶分子修饰中有什么作用?简述其主要技术过程。


正确答案:作用:通过定点突变技术或是化学方法,将酶蛋白分子中的某个氨基酸残基置换为另一个氨基酸残基,观察其对酶催化反应的影响和变化,分析了解该氨基酸残基在酶催化过程中的作用。
技术过程:
A、基因序列分析
B、蛋白质结构分析
C、酶活性中心分析
D、引物设计进行基因定点突变
E、酶基因克隆表达
F、变异特性分析

第8题:

酶分子修饰技术不断发展,主要的修饰方法有哪些?


正确答案: 酶分子修饰技术不断发展,修饰方法多种多样。主要的有:
①金属离子置换修饰;
②大分子结合修饰;
③肽链有限水解修饰;
④酶蛋白侧链基团修饰;
⑤氨基酸置换修饰;
⑥物理修饰。

第9题:

简述定点突变技术的主要技术过程及其在酶分子修饰中的应用。


正确答案:定点突变是20世纪80年代发展起来的一种基因操作技术,是指在DNA序列中的某一特定位点上进行碱基的改变从而获得突变基因的操作技术。定点突变技术是氨基酸置换修饰和核苷酸置换修饰的常用方法,也是蛋白质工程的常用技术。
(1)主要过程:
1.新的酶分子结构的设计;
2.突变基因碱基序列的确定;
3.突变基因的获得;
4.新酶的获得。
(2)应用:
1.酪氨酰-tRNA合成酶的修饰是将第51位的苏氨酸由脯氨酸置换,苏氨酸的密码子是ACU、ACC、ACA、ACG,脯氨酸的密码子是CUU、CCC、CCA、CCG,在mRNA上只需将密码子上的第一个A换成C,在对应的基因上只需将T换成G即可达到置换的目的。
2.T4溶菌酶的修饰是将第3位以异亮氨酸(密码子为AUU、AUC、AUA,对应基因上的碱基次序为TAA、TAG、TAT)置换成半胱氨酸(密码子为UGU、UGC,对应基因上的碱基次序为ACA、ACG),只需在对应基因的位点上置换两个碱基,由AC置换TA即可。

第10题:

简述易错PCR技术进行体外基因突变的主要过程。


正确答案:易错PCR是从酶的单一基因出发,在改变反应条件的情况下进行聚合酶链式反应,使扩增得到的基因出现碱基配对错误,从而引起基因突变的技术过程。
PCR:双链DNA的变性(解链)、引物与单链DNA退火结合、引物延伸。易错PCR在原有基础上提高镁离子的浓度、添加一定浓度的锰离子、改变4种底物的浓度比等反应条件,使DNA聚合酶在催化基因扩增时,增加碱基配对错误的出现频率,而引起基因突变。易错PCR技术所引起的基因突变和遗传进化仅在单一分子内发生,所以属于无性进化。