r>r1
r<rl
r=rl
r与r1的关系依C而定
第1题:
第2题:
第3题:
第4题:
第5题:
第6题:
第7题:
第8题:
第9题:
第10题:
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,
单选题n阶实对称矩阵A为正定矩阵,则下列不成立的是()。A 所有k级子式为正(k=1,2,…,n)B A的所有特征值非负C 秩(A)=n
设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.
填空题当n阶矩阵A的秩r(A)<n时,|A|=____。
单选题下列结论中正确的是( )A 矩阵A的行秩与列秩可以不等B 秩为r的矩阵中,所有r阶子式均不为零C 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零D 秩为r的矩阵中,不存在等于零的r-1阶子式
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.
设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).《》( )A.r(A)=m,r(B)=m B.r(A)=m,r(B)=n C.r(A)=n,r(B)=m D.r(A)=n,r(B)=n
设A,B为n阶矩阵,记r(X)为矩阵X的秩,(XY)表示分块矩阵,则A.Ar(A AB)=r(A) B.r(A BA)=r(A) C.r(A B)=max{r(A),r(B)} D.r(A B)=r(A^T B^T).
设A、B分别为n×m,n×l矩阵,C为以A、B为子块的n×(m+l)矩阵,即C=(A,B),则( ).《》( )A.秩(C)=秩(A) B.秩(C)=秩(B) C.秩(C)与秩(A)或秩(C)与秩(B)不一定相等 D.若秩(A)=秩(B)=r,则秩(C)=r
设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)n等于( )。 A. -An B. An C. (-1)nAn D. (-1)n-1An