单选题设α1=(a1,a2,a3)T,α2=(b1,b2,b3)T,α3=(c1,c2,c3)T,则三条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0,(其中ai2+bi2≠0,i=1,2,3)相交于一点的充要条件是(  ).A α1,α2,α3线性无关B α1,α2,α3线性相关C 秩(α1,α2,α3)=秩(α1,α2)D α1,α2,α3线性相关,α1,α2线性无关

题目
单选题
设α1=(a1,a2,a3)T,α2=(b1,b2,b3)T,α3=(c1,c2,c3)T,则三条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0,(其中ai2+bi2≠0,i=1,2,3)相交于一点的充要条件是(  ).
A

α1,α2,α3线性无关

B

α1,α2,α3线性相关

C

秩(α1,α2,α3)=秩(α1,α2

D

α1,α2,α3线性相关,α1,α2线性无关

如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

设向量组A:a1=(t,1,1),a2=(1,t,1),a3=(1,1,t)的秩为2,则t等于( ).

A.1
B.-2
C.1或-2
D.任意数

答案:B
解析:

第2题:

设向量组A:a1=(1,-1,0),a2=(2,1,t),a3=(0,1,1)线性相关,则t等于( ).

A.1
B.2
C.3
D.0

答案:C
解析:

第3题:

设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是()。

A、a1-a2,a2-a3,a3-a1

B、a1,a2,a3+a1

C、a1,a2,2a1-3a2

D、a2,a3,2a2+a3


参考答案:B

第4题:

设向量组A:a1=(1,0,5,2),a2=(-2,1,-4,1),a3=(-1,1,t,3),a4=(-2,1,-4,1)线性相关,则t必定等于().

  • A、1
  • B、2
  • C、3
  • D、任意数

正确答案:D

第5题:

设向量组α1=(1,0,1)T,α2=(0,1,1)T,a3=(1,3,5)T,不能由向量组β1,=(1,1,1)T,f12=(1,2,3)T,3β=(3,4,α)T线性表示。
(1)求a的值;
(2)将β1β2β2由α1α2α3线性表示。


答案:
解析:
(1)由于α1,α2,α3不能由β1β2β3,线性表示,对(β1,β2,β3,α1,α2,α3进行初等变换∶

故β1=2α1+4α2-α3,β2=α1+2α2,β3=5α1+10α2-2α3

第6题:

若使向量组α1=(6,t,7)T,α2=(4,2,2)T,α3=(4,1,0)T线性相关,则t等于(  )。

A、 -5
B、 5
C、 -2
D、 2

答案:B
解析:
α1、α2、α3三个列向量线性相关,则由三个向量组成的行列式对应的值为零,即



解得:t=5。

第7题:

设a1=(1,-1,2,4),a2=(0,3,1,2),a3=(3,0,7,14),a4=(1,-1,2,0),a5=(2,1,5,6)。
(1)证明a1,a2线性无关;
(2)把a1,a2扩充成一极大线性无关组。


答案:
解析:

第8题:

向量组a1=(1,-1,1),a2=(2,k,0),a3=(1,2,0)线性相关,则k=1。()

此题为判断题(对,错)。


参考答案:错误

第9题:

设向量组A:a1=(1,0,5,2),a2=(-2,1,-4,1),a3=(-1,1,t,3),a4=(-2,1,-4,1)线性相关,则t必定等于( ).

A.1
B.2
C.3
D.任意数

答案:D
解析:

第10题:

设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。

  • A、β必可用α1,α2线性表示
  • B、α1必可用α2,α3,β线性表示
  • C、α1,α2,α3必线性无关
  • D、α1,α2,α3必线性相关

正确答案:B

更多相关问题