设一个线性规划问题(P)的对偶问题为(D),则关于它们之间的关系的陈述不正确的是()。A、若(P)无可行解,则(D)也无可行解B、(P)、(D)均有可行解则都有最优解C、(P)的约束均为等式,则(D)的所有变量均无非负限制D、(D)也是(P)的对偶问题

题目

设一个线性规划问题(P)的对偶问题为(D),则关于它们之间的关系的陈述不正确的是()。

  • A、若(P)无可行解,则(D)也无可行解
  • B、(P)、(D)均有可行解则都有最优解
  • C、(P)的约束均为等式,则(D)的所有变量均无非负限制
  • D、(D)也是(P)的对偶问题
如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

互相对偶的两个线性规划问题,若其中一个无可行解,则另一个必定()

A、无可行解

B、有可行解,也可能无可行解

C、有最优解

D、有可行解


参考答案:B

第2题:

互为对偶的两个线性规划问题的解存在关系()。

A、原问题无可行解,对偶问题也无可行解

B、对偶问题有可行解,原问题可能无可行解

C、若最优解存在,则最优解相同

D、一个问题无可行解,则另一个问题具有无界解


参考答案:B

第3题:

● 线性规划问题就是面向实际应用,求解一组非负变量,使其满是给定的一组线性约束条件,并使某个线性目标函数达到极值。满是这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是(56)。

(56)

A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到

B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变

C.线性规划问题如果存在可行解,则一定有最优解

D.线性规划问题的最优解只可能是0个、1个或无穷多个


正确答案:C
试题(56)分析
线性规划的可行解域是由一组线性约束条件形成的,从几何意义来说,就是由一些线性解面围割形成的区域。由于线性规划的目标函数也是线性的,因此,目标函数的等值域是线性区域。如果在可行解域中的某内点处目标函数达到最优值,则通过该内点的目标函数等值域与可行解域边界的交点也能达到最优解。所以,第一步的结论是:最优解必然会在可行解域的边界处达到。由于目标函数的各个等值域是平行的,而且目标函数的值将随着该等值域向某个方向平行移动而增加或减少(或不变)。如果最优解在可行解域边界某个非顶点处达到,则随着等值域向某个方向移动,目标函数的值会增加或减少(与最优解矛盾)或没有变化(在此段边界上都达到最优解),从而仍会在可行解域的某个顶点处达到最优解。
既然可行解域是由一组线性约束条件所对应的线性区域围成的,那么再增加一个约束条件时,要么缩小可行解域(新的约束条件分割了原来的可行解域),要么可行解域不变(新的约束条件与原来的可行解域不相交)。
如果可行解域是无界的,那么目标函数的等值域向某个方向平移(目标函数的值线性变化)时,可能出现无限增加或无限减少的情况,因此有可能没有最优解。当然,有时,即使可行解域是无界的,但仍然有最优解,但确实会有不存在最优解的情况。
由于线性规划的可行解域是凸域,区域内任取两点,则这两点的连线上所有的点都属于可行解域(线性函数围割而成的区域必是凸域)。如果线性规划问题在可行解域的某两个点丘达到最优解(等值),则在这两点的连线上都能达到最优解(如果目标函数的等值域包括某两个点,则也会包括这两点连线上的所有点)。因此,线性规划问题的最优解要么是0个(没有),要么是唯一的(1个),要么有无穷个(只要有2个,就会有无穷个)。
参考答案
  (56)C

第4题:

互为对偶的两个线性规划问题的解存在关系( )

A.原问题无可行解,对偶问题也无可行解
B.对偶问题有可行解,原问题可能无可行解
C.若最优解存在,则最优解相同
D.一个问题无可行解,则另一个问题具有无界解

答案:B
解析:

第5题:

线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是( )。

A.线性规划问题的可行解区一定存在B.如果可行解区存在,则一定有界C.如果可行解区存在但无界,则一定不存在最优解D.如果最优解存在,则一定会在可行解区的某个顶点处达到


正确答案:D

第6题:

设M是线性规划问题,N是其对偶问题,则()不正确。

A.M有最优解,N不一定有最优解

B.若M和N都有最优解,则二者最优值肯定相等

C.若M无可行解,则N无有界最优解

D.N的对偶问题为M


正确答案:A

第7题:

下列说法正确的为() 。

A.如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解

B.如果线性规划的对偶问题无可行解,则原问题也一定无可行解

C.在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目 标函数值都一定不超过其对偶问题可行解的目标函数

D.如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解


答案:D

解析:

应该选D,由弱对偶性的推论 :如果原问题有可行解,且目标函数值无界,即具有无界解时,其对偶问题无可行解。


第8题:

一对对偶问题有最优解的充要条件是()。

A、原问题有可行解

B、对偶问题有可行解

C、两个都有可可行解

D、任意一个有可行解


参考答案:C

第9题:

线性规划问题就是面向实际应用,求解一组非负变量,使其满足给定的一组线性约束条件,并使某个线性目标函数达到极值。满足这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是______。

A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到

B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变

C.线性规划问题如果存在可行解,则一定有最优解

D.线性规划问题的最优解只可能是0个、1个或无穷多个


正确答案:C
解析:线性规划的可行解域是由一组线性约束条件形成的,从几何意义来说,就是由一些线性解面围割形成的区域。由于线性规划的目标函数也是线性的,因此,目标函数的等值域是线性区域。如果在可行解域中的某内点处目标函数达到最优值,则通过该内点的目标函数等值域与可行解域边界的交点也能达到最优解。所以,第一步的结论是:最优解必然会在可行解域的边界处达到。由于目标函数的各个等值域是平行的,而且目标函数的值将随着该等值域向某个方向平行移动而增加或减少(或不变)。如果最优解在可行解域边界某个非顶点处达到,则随着等值域向某个方向移动,目标函数的值会增加或减少(与最优解矛盾)或没有变化(在此段边界上都达到最优解),从而仍会在可行解域的某个顶点处达到最优解。
  既然可行解域是由一组线性约束条件所对应的线性区域围成的,那么再增加一个约束条件时,要么缩小可行解域(新的约束条件分割了原来的可行解域),要么可行解域不变(新的约束条件与原来的可行解域不相交)。
  如果可行解域是无界的,那么目标函数的等值域向某个方向平移(目标函数的值线性变化)时,可能出现无限增加或无限减少的情况,因此有可能没有最优解。当然,有时,即使可行解域是无界的,但仍然有最优解,但确实会有不存在最优解的情况。
  由于线性规划的可行解域是凸域,区域内任取两点,则这两点的连线上所有的点部属于可行解域(线性函数围割而成的区域必是凸域)。如果线性规划问题在可行解域的某两个点上达到最优解(等值),则在这两点的连线上都能达到最优解(如果目标函数的等值域包括某两个点,则也会包括这两点连线上的所有点)。因此,线性规划问题的最优解要么是0个(没有),要么是唯一的(1个),要么有无穷个(只要有2个,就会有无穷个)。

第10题:

原问题无最优解,则对偶问题无可行解( )


答案:错
解析:

更多相关问题