设一个线性规划问题(P)的对偶问题为(D),则关于它们之间的关系的陈述不正确的是()。
第1题:
互相对偶的两个线性规划问题,若其中一个无可行解,则另一个必定()
A、无可行解
B、有可行解,也可能无可行解
C、有最优解
D、有可行解
第2题:
A、原问题无可行解,对偶问题也无可行解
B、对偶问题有可行解,原问题可能无可行解
C、若最优解存在,则最优解相同
D、一个问题无可行解,则另一个问题具有无界解
第3题:
● 线性规划问题就是面向实际应用,求解一组非负变量,使其满是给定的一组线性约束条件,并使某个线性目标函数达到极值。满是这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是(56)。
(56)
A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到
B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变
C.线性规划问题如果存在可行解,则一定有最优解
D.线性规划问题的最优解只可能是0个、1个或无穷多个
第4题:
第5题:
线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是( )。
A.线性规划问题的可行解区一定存在B.如果可行解区存在,则一定有界C.如果可行解区存在但无界,则一定不存在最优解D.如果最优解存在,则一定会在可行解区的某个顶点处达到
第6题:
A.M有最优解,N不一定有最优解
B.若M和N都有最优解,则二者最优值肯定相等
C.若M无可行解,则N无有界最优解
D.N的对偶问题为M
第7题:
A.如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解
B.如果线性规划的对偶问题无可行解,则原问题也一定无可行解
C.在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目 标函数值都一定不超过其对偶问题可行解的目标函数
D.如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解
答案:D
解析:
应该选D,由弱对偶性的推论 :如果原问题有可行解,且目标函数值无界,即具有无界解时,其对偶问题无可行解。
第8题:
一对对偶问题有最优解的充要条件是()。
A、原问题有可行解
B、对偶问题有可行解
C、两个都有可可行解
D、任意一个有可行解
第9题:
线性规划问题就是面向实际应用,求解一组非负变量,使其满足给定的一组线性约束条件,并使某个线性目标函数达到极值。满足这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是______。
A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到
B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变
C.线性规划问题如果存在可行解,则一定有最优解
D.线性规划问题的最优解只可能是0个、1个或无穷多个
第10题: