冒泡排序
堆排序
快速排序
归并排序
第1题:
在快速排序过程中,每次划分,将被划分的表(或子表)分成左、右两个子表,考虑这两个子表,下列结论一定正确的是________。
A.左、右两个子表都已各自排好序
B.左边子表中的元素都不大于右边子表中的元素
C.左边子表的长度小于右边子表的长度
D.左、右两个子表中元素的平均值相等
第2题:
阅读以下说明和代码,填补代码中的空缺,将解答填入答题纸的对应栏内。 【说明】 下面的程序利用快速排序中划分的思想在整数序列中找出第k小的元素(即将元素从小到大排序后,取第k个元素)。 对一个整数序列进行快速排序的方法是:在待排序的整数序列中取第一个数作为基准值,然后根据基准值进行划分,从而将待排序的序列划分为不大于基准值者(称为左子序列)和大于基准值者(称为右子序列),然后再对左子序列和右子序列分别进行快速排序,最终得到非递减的有序序列。 例如,整数序列“19, 12, 30, 11,7,53, 78, 25"的第3小元素为12。整数序列“19,12,7,30,11,11,7,53,78,25,7"的第3小元素为7。 函数partition(int a[ ], int low,int high)以a[low]的值为基准,对a[low]、a[low+1]、…、 a[high]进行划分,最后将该基准值放入a[i] (low≤i≤high),并使得a[low]、a[low+1]、,..、 A[i-1]都小于或等于a[i],而a[i+1]、a[i+2]、..、a[high]都大于a[i]。 函教findkthElem(int a[],int startIdx,int endIdx,inr k)在a[startIdx]、a[startIdx+1]、...、a[endIdx]中找出第k小的元素。
【代码】 include <stdio.h> include <stdlib.h> Int partition(int a [ ],int low, int high) {//对 a[low..high]进行划分,使得a[low..i]中的元素都不大于a[i+1..high]中的元素。 int pivot=a[low]; //pivot表示基准元素 Int i=low,j=high; while(( 1) ){ While(i<j&&a[j]>pivot)--j; a[i]=a[j] While(i<j&&a[i]<=pivot)++i; a[j]=a[i] } (2) ; //基准元素定位 return i; } Int findkthElem(int a[ ],int startIdx,int endIdx, int k) {//整数序列存储在a[startldx..endldx]中,查找并返回第k小的元素。 if (startldx<0 ||endIdx<0 || startIdx>endIdx || k<1 ||k-1>endIdx ||k-1<startIdx) Return-1; //参数错误 if(startIdx<endldx){ int loc=partition(a, startIdx, endldx); ∥进行划分,确定基准元素的位置 if (loc==k-1) ∥找到第k小的元素 return (3) ; if(k-1 <loc) //继续在基准元素之前查找 return findkthElem(a, (4) ,k); else //继续在基准元素之后查找 return findkthElem(a, (5) ,k); } return a[startIdx]; } int main() { int i, k; int n; int a[] = {19, 12, 7, 30, 11, 11, 7, 53, 78, 25, 7}; n= sizeof(a)/sizeof(int) //计算序列中的元素个数 for (k=1;k<n+1;k++){ for(i=0;i<n;i++){ printf(“%d/t”,a[i]); } printf(“\n”); printf(“elem %d=%d\n,k,findkthElem(a,0,n-1,k));//输出序列中第k小的元素 } return 0; }
第3题:
A.分治
B.动态规划
C.贪心
D.回溯
第4题:
第5题:
第6题:
阅读以下说明和 C 代码,填补代码中的空缺,将解答填入答题纸的对应栏内。 【说明】 对一个整数序列进行快速排序的方法是:在待排序的整数序列中取第一个数作为基准值,然后根据基准值进行划分,从而将待排序列划分为不大于基准值者(称为左子序列)和大于基准值者(称为右子序列),然后再对左子序列和右子序列分别进行快速排序, 最终得到非递减的有序序列。 函数 quicksort(int a[],int n)实现了快速排序,其中,n 个整数构成的待排序列保存在数组元素 a[0]-a[n-1]中。
【C 代码】 include < stdio.h> void quicksort(int a[] ,int n) { int i ,j; int pivot = a[0]; //设置基准值 i =0; j = n-l; while (i< j) { while (i<j &&(1)) j-- //大于基准值者保持在原位置 if (i<j) { a[i]=a[j]; i++;} while (i,j &&(2)) i++; //不大于基准值者保持在原位置 if (i<j) { a[j]=a[i]; j--;} } a[i] = pivot; //基准元素归位 if ( i>1) (3) ; //递归地对左子序列进行快速排序 if ( n-i-1>1 ) (4) ; //递归地对右子序列进行快速排序 } int main () { int i,arr[ ] = {23,56,9,75,18,42,11,67}; quicksort ( (5) ); //调用 quicksort 对数组 arr[ ]进行排序 for( i=0; i<sizeof(arr) /sizeof(int); i++ ) printf(" %d\t" ,arr[i]) ; return 0; }
第7题:
快速排序算法在排序过程中,在待排序数组中确定一个元素为基准元素,根据基准元素把待排序数组划分成两个部分,前面一部分元素值小于等于基准元素,而后面一部分元素值大于基准元素。然后再分别对前后两个部分进一步进行划分。根据上述描述,快速排序算法采用了 (61) 算法设计策略。已知确定基准元素操作的时间复杂度为,则快速排序算法的最好和最坏情况下的时间复杂度为 (62) 。
A.分治
B.动态规划
C.贪心
D.回溯
第8题:
A、快速排序
B、冒泡排序
C、简单选择排序D、归并排序
第9题:
第10题: