填空题设α=(1,0,-1,2)T,β=(0,1,0,2),矩阵A=α·β,则秩r(A)=____.

题目
填空题
设α=(1,0,-1,2)T,β=(0,1,0,2),矩阵A=α·β,则秩r(A)=____.
如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,


答案:
解析:

第2题:

设A,B为n阶矩阵,记r(X)为矩阵X的秩,(XY)表示分块矩阵,则



A.Ar(A AB)=r(A)
B.r(A BA)=r(A)
C.r(A B)=max{r(A),r(B)}
D.r(A B)=r(A^T B^T).

答案:A
解析:

第3题:

设三阶实对称矩阵的特征值为3,3,0,则A的秩r(A)=()

A、2

B、3

C、4

D、5


参考答案:A

第4题:

下列结论中正确的是(  )。

A、 矩阵A的行秩与列秩可以不等
B、 秩为r的矩阵中,所有r阶子式均不为零
C、 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零
D、 秩为r的矩阵中,不存在等于零的r-1阶子式

答案:C
解析:
A项,矩阵A的行秩与列秩一定相等。B项,由矩阵秩的定义可知,若矩阵A(m×n)中至少有一个r阶子式不等于零,且r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。即秩为r的矩阵中,至少有一个r阶子式不等于零,不必满足所有r阶子式均不为零。C项,矩阵A的行列式不等于零意味着矩阵A不满秩,n阶矩阵的秩为n时,所对应的行列式的值大于零;当n阶矩阵的秩<n时,所对应的行列式的值等于零。D项,秩为r的矩阵中,有可能存在等于零的r-1阶子式,如秩为2的矩阵



中存在等于0的1阶子式。

第5题:

设α1=(1,2,-1,0)^T,α2=(1,1,0,2)^T,α3=(2,1,1,α)^T.若由α1,α2,α3生成的向量空间的维数为2,则α=________.


答案:1、6.
解析:
本题考查向量空间及其维数的概念,因为α1,α2,α3所生成的向量空间是2维,亦即向量组的秩r(α1,α2,α3)=2 

由秩为2,知α=6.

第6题:

设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则



A.A秩r(A)=m,秩r(B)=m
B.秩r(A)=m,秩r(B)=n
C.秩r(A)=n,秩r(B)=m
D.秩r(A)=n,秩r(B)=n

答案:A
解析:
本题考的是矩阵秩的概念和公式.因为AB=E是m阶单位矩阵,知r(AB)=m.又因r(AB)≤min(r(A),r(B)),故m≤r(A),m≤r(B). ①另一方面,A是m×n矩阵,B是n×m矩阵,又有r(A)≤m,r(B)≤m. ②比较①、②得r(A)=m,r(B)=m.所以选(A)

第7题:

设α,β为三维列向量,矩阵A=αα^T+ββ^T,其中α^T,β^T分别是α,β的转置.证明:
  (Ⅰ)秩r(A)≤2;
  (Ⅱ)若α,β线性相关,则秩r(A)<2.


答案:
解析:
【证明】(Ⅰ)因为α,β为三维列向量,那么αα^T和ββ^T都是三阶矩阵,
且秩r(αα^T)≤1,r(ββ^T)≤1.
那么,r(A)=r(αα^T+ββ^T)≤r(αα^T)+r(ββ^T)≤2.
(Ⅱ)由于α,β线性相关,不妨设α=kβ,于是
r(A)=r(αα^T+ββ^T)=r((1+k^2)ββ^T)≤r(β)≤1<2.
【评注】本题考查矩阵秩的性质公式.
(Ⅰ)中有两个基本知识点:①r(αα^T)≤1和②r(A+B)≤r(A)+r(B).
(Ⅱ)中有两个基本知识点:①α,β线性相关的几何意义和②r(kA)=r(A),k≠0.
注意,如果分块矩阵比较熟悉,本题的(Ⅰ)也可如下处理:
因为

那么
从而r(A)≤2.

第8题:

设x=(1,0,-1,2)T,则||x||∞的计算结果为()

A、2

B、4

C、3

D、1


参考答案:A

第9题:

设α为三维单位列向量,E为三阶单位矩阵,则矩阵E-αα^T的秩为________.


答案:
解析:

第10题:

设矩阵,则A^3的秩为________


答案:
解析: