问答题已知企业的生产函数为Q=F(L,K)=LK-0.5L2-0.32K2,Q表示产量,K表示资本,L表示劳动,令K=10。试求劳动的平均产量函数(AP1)和边际产量函数(MP1)。

题目
问答题
已知企业的生产函数为Q=F(L,K)=LK-0.5L2-0.32K2,Q表示产量,K表示资本,L表示劳动,令K=10。试求劳动的平均产量函数(AP1)和边际产量函数(MP1)。
如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

生产函数Q=f(L,K)的要素组合与产量的对应图,如图所示,这张图是以坐标平面的形式编制的。其中,横轴和纵轴分别表示劳动投入量和资本投入量,虚线交点上的数字表示与该点的要素投入组合对应的产量。

(1)图中是否存在规模报酬递增、不变和递减?

(2)图中是否存在边际报酬递减?

(3)图中哪些要素组合处于同一条等产量曲线上?


参考答案:

(1)图中存在规模报酬递减与不变。如70=f(1,2)与130=f(2,4),此时生产要素增加比例为2,而产量增加比例为130/70,小于2,因此存在规模报酬递减。又如,50=f(1,1)与100=f(2,2)此时生产要素增加比例为2,而产量增加比例为100/50,等于2,因此存在规模报酬不变。
(2)图中存在边际报酬递减。如k=1保持不变,当L发生改变时,在0→1、1→2、2→3、3→4四段中,边际产量分别为50、20、10、5,可以看出边际报酬递减。
(3)f(2,1)与f(1,2)、f(3,1)与f(1,3)、f(4,1)与f(1,4)、f(3,2)与f(2,3)、f(4,2)与f(2,4)、f(4,3)与f(3,4)分别处于Q=70、Q=80、Q=85、Q=120、Q=130、Q=165等产量曲线上。


第2题:

生产函数Q=3L+4K(其中Q为产量,L、K分别为劳动和资本的投入量)的规模报酬()。

A.递增

B.递减

C.不变

D.先增后减


正确答案:C

第3题:

假定L单位的劳动力和K单位的资本相结合可以生产Q单位的产品,则生产函数可表示为Q=F(L,K),如果和L和K都增加X倍,产量为Q时,即当A=X时说明()

A.规模收益递减

B.规模收益不变

C.规模收益递增

D.不能确定


参考答案:B

第4题:

已知生产函数Q=f(L,K)=2KL-0.5L2-0.5K2,假定厂商目前处于短期生产切K的平均数为10 (1)写出在短期生产中该厂商关于劳动的总产量TPL函数、关于劳动的平均产量APL函数和关于劳动的边际产量MPL函数。 (2)分别计算当劳动的总产量TPL、劳动的平均产量APL和劳动的边际产量MPL各自达到最大值时的厂商的劳动投入量。 (3)什么时候APL= MPL?它的值又是多少?


答案:
解析:

第5题:

已知某厂商使用L和K两种要素生产一种产品,其固定替代比例的生产函数为Q=4L+3K (1)作出等产量曲线。 (2)边际技术替代率是多少? (3)讨论其规模报酬情况。 (4)令PL=5、PK =3,求C=90时的K、L值以及最大产量。 (5)令PL =3、PK =3,求C=90时的K、L值以及最大产量。 (6)令PL =4、PK =3,求C=90时的K、L值以及最大产量。 (7)比较(4)、(5)和(6),你得到什么结论?


答案:
解析:
(1)如图44所示。


故此时全部使用要素L,即K=O,L=30。 (6)由题可知MRTSLK=PL/PK 此时使用L与K要素均可(只需满足约束条件)。 (7)比较(4)、(5)和(6)可以得到一般的结论: 1)对于固定比例生产函数而言,如果等产量曲线斜率的绝对值小于预算线斜率的绝对值,则厂商的均衡点位于等产量曲线与预算线在纵轴的交点。 2)如果等产量曲线斜率的绝对值大于预算线斜率的绝对值,则厂商生产的均衡点位于等产量曲线与预算线在横轴的交点,在以上两种情况下,厂商只使用一种要素进行生产,另一种要素使用量为零。 3)如果等产量曲线斜率的绝对值等于预算线斜率的绝对值,即两线重合,则厂商生产的均衡点可以发生在该重合线上的任意位置,只需满足预算约束条件即可。

第6题:

已知生产函数Q=f(L,K)=2KL-0.5L2-0.5K2,假定厂商目前处于短期生产,且K=10,

求:

(1)写出在短期生产中该厂商关于劳动的总产量TPL函数、劳动的平均产量APL函数和劳动的边际产量MPL函数。

(2)分别计算当总产量TPL、劳动平均产量APL和劳动边际产量MPL各自达到极大值时的厂商劳动的投入量。(3)什么时候APL=MPL?它的值又是多少?


参考答案:

(1)短期生产中K是不变的,短期关于劳动的总产量函数为:


第7题:

假定某厂商短期生产的边际成本函数为SMC(Q)=3Q2-8Q+100,且已知当产量Q=10时的总成本STC=2400,求相应的STC函数、SAC函数和AVC函数。


参考答案:


切入点:对总成本函数求导数,得到边际成本函数,反过来对边际成本函数积分,会得到总成本函数。本题给了SMC,积分后得到总成本函数,再根据给的其他条件确定固定成本的数值。最后几个函数就出来了。

第8题:

已知某企业的生产函数Q=L2/3K1/3 ,劳动的价格W=2,资本的价格r=1,

求:

(1)当成本C=3000时,企业实现最大产量时的L、K和Q的值。

(2)当产量Q=800时,企业实现最少成本时的L、K和C的值。


参考答案:

如图:
L=800K=800        C=2L+K=3×800=2400


第9题:

已知生产函数为Q =f(K,L)=KL -0. 5L2-0.32K2,Q表示产量,K表示资本,L表示劳动,若K =10,求: (1)写出劳动的平均产量和边际产量函数。 (2)计算当总产量达到极大值时企业雇佣的劳动人数。


答案:
解析:
代入K =10,有Q=10L -0. 5L2—32。 (1)劳动的平均产量函数为APL= 10 -0.5L-32/L.劳动的边际产量函数为MP1=10 -L。 (2)要使总产量达到极大值,由MPL =0,可得L=10.

第10题:

假设某厂商的短期生产函数为Q=35L+8L2-L3 求:(1)该企业的平均产量函数和边际产量函数。 (2)如果企业使用的生产要素的数量为/=6,是否处于短期生产的合理区间?为什么?


答案:
解析:
(1)由Q=35L+ 8L2一L2可得: AP= Q/L=35+8L-L2,MP= dQ/d/= 35 +16L-3L2. (2)当L=6时,AP =47,MP =23,由于MP <AP,则处于短期生产的合理区间。

更多相关问题