已知一个厂商的生产函数Q=1/11(4KL - L2一K2),其中K和L分别表示资本和劳动,且要素市场价格分别为v和ω。产品的市场价格为P,而该企业仅是一个价格接受者。假设该厂商产品的市场需求函数Q=a-0.5P。若劳动力市场是完全竞争的,求该厂商对劳动的需求函数。

题目
已知一个厂商的生产函数Q=1/11(4KL - L2一K2),其中K和L分别表示资本和劳动,且要素市场价格分别为v和ω。产品的市场价格为P,而该企业仅是一个价格接受者。假设该厂商产品的市场需求函数Q=a-0.5P。若劳动力市场是完全竞争的,求该厂商对劳动的需求函数。

参考答案和解析
答案:
解析:
如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

已知某个完全竞争行业中的单个厂商的短期成本函数是STC=0.1Q3—2Q2+15Q+10。求:

(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;

(2)当市场价格下降为多少时,厂商必须停产;

(3)厂商的短期供给函数。


答案:
  解:(1)已知STC=0.1Q3 - 2Q2+15Q+10,P=55
  完全竞争厂商的短期均衡的条件是:P=MR=SMC
  SMC=dSTC/dQ=0.3Q2 - 4Q+15
  当P=55,即55=0.3Q2 - 4Q+15
  解方程得Q=20
  即短期均衡产量为20。利润等于总收益减总成本,
  即л=TR-TC=P×Q – (0.1Q3– 2Q2+15Q+10)
  将P=55,Q=20代入求得:л=790
  即厂商的短期均衡产量和利润分别为20和790。
  (2)厂商必须停产的条件是:价格等于AVC的最小值。
  因为TC=VC+FC,FC=10,
  所以VC=0.1Q3 -2Q2+15Q
  AVC=VC/Q=0.1Q2 -2Q+15;对Q求导,令dAVC/dQ=0,可得:dAVC/dQ=0.2Q-2=0,求得Q=10, 即当Q=10,AVC取最小值;此时,AVC=10-20+15=5
  也就是说,当价格下降到5时,厂商必须停产。
  (3)厂商的短期供给函数用SMC曲线大于和等于停止营业点的部分来表示。相应的,厂商的短期供给函数应该就是SMC函数,即SMC=dSTC/dQ=0.3Q2 - 4Q+15,但要满足Q10即大于停止营止点的产量。

第2题:

垄断厂商生产某一产品,产品的成本函数为C(q)=q2,市场反需求函数为p=120-q。试求:(1)垄断厂商利润最大化的产量和价格,并画图说明。(2)政府对垄断厂商征收100元的税收后,垄断厂商的产量和价格。(3)政府对垄断厂商单位产品征收从量税2元,垄断厂商的产量和价格。


答案:
解析:
(1)垄断厂商的边际成本函数为MC= 2q,边际收益函数为MR =120 - 2q,根据垄断 厂商利润最大化原则MR =MC,可以解得垄断厂商利润最大化的产量和价格分别为q*一30、 p* =90。如图1 2所示,厂商在MR曲线和MC曲线的交点处确定利润最大化的产量q* =30, 再根据q’对应的市场需求曲线D上的点确定产品的价格p* =90。

(2)当政府对垄断厂商征收100元税收后,垄断厂商的实际成本函数变为: C(q) =q2+100 但垄断厂商的边际成本函数仍为MC=2q,因而利润最大化的条件不变,因此垄断厂商利润最大 化的产量和价格仍然为q+ =30、p* =90。 (3)当政府对垄断厂商单位产品征收从量税2元后,垄断厂商的实际成本函数变为C(q)一qz+ 2q,边际成本函数则为MC=2q+2,边际收益函数仍为MR =120-2q,根据垄断厂商利润最大 化原则MR =MC,可以解得垄断厂商利润最大化的产量和价格分别为g’=29.5,p* =90.5。

第3题:

计算题:
已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3-2Q2+15Q+10。试求:

计算题:

已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3-2Q2+15Q+10。试求:

(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;

(2)当市场上价格下降为多少时,厂商必须停产;

(3)厂商的短期供给函数


参考答案:

(1)根据MC=MR=P
MC=dSTC/dQ=0.3Q2-4Q+15=55=P
解得Q=20
利润=TR-STC=55*20-(0.1*203-2*202+15*20+10)=790
(2)停业点为AVC的最低点
AVC=TVC/Q=0.1Q2-2Q+15
当Q=10时AVC最小且AVC=5所以P=5时厂商必须停产
(3)短期供给函数即SMC函数且大于最低AVC对应产量以上的区间
SMC=dSTC/dQ=0.3Q2-4Q+15
所以短期供函数为0.3Q2-4Q+15(Q≥10)


第4题:

已知一个厂商的生产函数Q=1/11(4KL - L2一K2),其中K和L分别表示资本和劳动,且要素市场价格分别为v和ω。产品的市场价格为P,而该企业仅是一个价格接受者。 该企业现有资本存量为

当面临短期的产品价格波动时,它将如何生产?


答案:
解析:
对于该企业而言,利润函数为:π=PQ-vK-ωL 在短期,当资本存量一定时,厂商的利润函数为:

企业利润最大化的一阶条件为:

此时,企业所需要的劳动力为

第5题:

一个行业包括一个主导厂商(用z表示)和12个次要厂商(用j表示).主导厂商的总成本函数为Ci=0.0333q3-2q2 +50q,,市场需求曲线为Q=250 -p:主导厂商准确地估计出每个小厂商的成本函数为C.= 2q2+ 1Oq,。主导厂商领导市场价格,并管理自己的产出量,使整个市场供给既不短缺,也无剩余。主导厂商能够正确地预期次要厂商将接受它定的价格。主导厂商的定价是为了使自己的利润最大。 (1)主导厂商的定价为多高?它的产量和利润分别为多少? (2)每个小企业的产量和利润分别为多少?


答案:
解析:

第6题:

考虑一个双寡头古诺模型,p和Q分别表示市场价格和产品销售总量;q1和q2分别表示厂商1和厂商2的产量;MC表示厂商生产的边际成本,假设两个厂商生产的产品完全同质。 如果两个厂商同质,且在均衡价格上的需求弹性(以绝对值定义)为2,那么均衡时厂商的价格加成率是多少?


答案:
解析:

第7题:

已知一个厂商的生产函数Q=1/11(4KL - L2一K2),其中K和L分别表示资本和劳动,且要素市场价格分别为v和ω。产品的市场价格为P,而该企业仅是一个价格接受者。假设企业处在长期生产中,w=1,v=4, 企业的最优生产方式是什么?企业的长期成本函数是什么?


答案:
解析:

第8题:

某成本不变的完全竞争行业的代表性厂商的长期总成本函数为LTC=Q3-60Q2+1500Q,产品价格P=975美元,市场需求函数为P=9600-2Q,

试求:

(1)利润极大时的产量、平均成本和利润。

(2)该行业长期均衡时的价格和厂商的产量。

(3)用图形表示上述(1)和(2)。

(4)若市场需求曲线是P=9600-2Q,试问长期均衡中留存于该行业的厂商人数是多少?


参考答案:

1)LMC=dLTC/dQ=3Q2-120Q+1500
当LMC=P=MR时,利润极大。
故,3Q2-120Q+1500=975,得Q1=5(舍);Q2=35
LAC=LTC/Q=Q2-60Q+1500=352+60×35+1500=625
π=TR-TC=P·Q-AC·Q=975×35-625×35=12250
(2)行业长期均衡时,LAC最小,当LAC′=0,且LAC〞>0时,有最小值。
即,(Q2-60Q+1500)′=2Q-60=0,得,Q=30,LAC〞=2>0
当Q=30时,P=LACmin=302-60×30+1500=600
(3)如图所示:


(4)若市场需求曲线是P=9600-2Q,又知长期均衡价格P=600,
       业产量Q=(9600-P)/2=(9600-600)/2=4500
厂商人数N=行业产量/厂商产量=4500/30=150家
 


第9题:

假定某垄断厂商生产两种相关联的产品,其中任何一种产品需求量的变化都会影响另一种产品的价格,这两种产品的市场需求函数分别为P1=120 -2Q1 -0. 502,P2=100 - Q2 -0.5Q1。这两种产品的生产成本函数是相互独立的,分别为TC1 =50Q1,TC2=O.5Q22求该垄断厂商关于每一种产品的产量和价格。


答案:
解析:

第10题:

假定一个竞争性厂商,其生产函数为Q=f(L,K)=AL^αK^β,生产要素L和K的价格分别为w和r。 (1)试求在K为不变投入时厂商的短期成本函数。 (2)求厂商的长期成本函数,并讨论不同的规模报酬对平均成本曲线形状的影响。


答案:
解析:

更多相关问题