函数y1(x)、y2(x)是微分方程y′+p(x)y=0的两个不同特解,则该方程的通解为(  )。

题目
单选题
函数y1(x)、y2(x)是微分方程y′+p(x)y=0的两个不同特解,则该方程的通解为(  )。
A

y=c1y1+c2y2

B

y=y1+cy2

C

y=y1+c(y1+y2

D

y=c(y1-y2

参考答案和解析
正确答案: B
解析:
由解的结构可知,y1-y2是该方程的一个非零特解,则方程的通解为y=c(y1-y2)。
如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

设非齐次线性微分方程y´+P(x)y=Q(x)有两个不同的解析:y1(x)与y2(x),C为任意常数,则该方程的通解是( ).

A.C[(y1(x)-y2(x)]
B.y1(x)+C[(y1(x)-y2(x)]
C.C[(y1(x)+y2(x)]
D.y1(x)+C[(y1(x)+y2(x)]

答案:B
解析:
y1(x)-y2(x)是对应的齐次方程y

第2题:

若y1(x)是线性非齐次方程y'+p(x)y=Q(x)的一个特解,则该方程的通解是下列中哪一个方程?


答案:B
解析:
提示:非齐次方程的通解是由齐次方程的通解加非齐次方程的特解构成,令Q(x)=0,求对应齐次方程y'+p(x)y=0的通解。

第3题:

已知微分方程y'+p(x)y = q(x)[q(x)≠0]有两个不同的特解y1(x), y2(x),C为任意常数,则该微分方程的通解是:

A.y=C(y1-y2)
B. y=C(y1+y2)
C. y=y1+C(y1+y2)
D. y=y1+C(y1-y2)

答案:D
解析:
提示:y'+p(x)y=q(x),y1(x)-y2 (x)为对应齐次方程的解。微分方程:y'+p(x)=q(x)的通解为:y=y1+C(y1 -y2)。

第4题:

单选题
若y2(X)是线性非齐次方程y'+p(x)y-q(x)的解,y1(x)是对应的齐次方程y'+p(x)y=0的解,则下列函数也是y'+p(x)y=g(x)的解的是()。
A

y=Cy1(x)+y2(x)

B

y=y1(x)+Cy2(x)

C

y=C[y1(x)+y2(x)]

D

y=Cy1(x)-y2(x)


正确答案: C
解析: 暂无解析

第5题:

若y2(x)是线性非齐次方程y'+p(x)y=q(x)的解,y1(x)是对应的齐次方程y'+p(x)y=0的解,则下列函数也是y'+p(x)y=q(x) 的解的是( )。
A.y=Cy1(x)+y2(x) B. y=y1(x)+Cy2(x)
C.y=C[y1(x)+y2(x)] D.y=Cy1(x)-y2(x)


答案:A
解析:
提示:齐次方程的通解加上非齐次的特解仍是非齐次的解。

第6题:

已知y1(X)与y2(x)是方程:y" + P(x)y'+Q(x)y = 0的两个线性无关的特解,y1(x)和y2(x)分别是方程y"+P(x)y'+Q(x)y=R1(x)和y"+p(x)+Q(x)y=R2(x)的特解。那么方程y"+p(x)y'+Q(x)y=R1(x)+R2(x)的通解应是:

A. c1y1+c2y2
B. c1Y1(x) +c2Y2 (x)
C. c1y1+c2y2 +Y1(x)
D. c1y1+c2y2 +Y1 (x) +Y2 (x)

答案:D
解析:
提示:按二阶线性非齐次方程通解的结构,写出对应二阶线性齐次方程的通解和非齐次方程的一个特解,得到非齐次方程的通解。

第7题:

已知y1(x)和y2(x)是方程y''+p(x)y'+Q(x)y=0的两个线性无关的特解, Y1(x)和Y2 (x)分别是方程y''+p(x)y'+Q(x)y=R1(x)和y''+p(x)y'+Q(x)y=R2(x)的特解。那么方程y''+p(x)y'+Q(x)y=R1(x)y+R2(x)的通解应是:
A. c1y1+c2y2B. c1Y1(x)+c2Y2(x)
C. c1y1+c2y2+Y1(x) D. c1y1+c2y2+Y1(x)+Y2(x)


答案:D
解析:
提示:按二阶线性非齐次方程通解的结构,写出对应二阶线性齐次方程的通解和非齐次方程的一个特解,得到非齐次方程的通解。

第8题:

设非齐次线性微分方程y′+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程通解是( )。

A.C[y1(x)-y2(x)]
B.y1(x)+C[y1(x)-y2(x)]
C.C[y1(x)+y2(x)]
D.y1(x)+C[y1(x)+y2(x)]

答案:B
解析:
因为y1(x),y2(x)是y′+P(x)y=Q(x)的两个不同的解,所以C(y1(x)-y2(x))是齐次方程y′+P(x)y=0的通解,进而y1(x)+C[y1(x)-y2(x)]是题中非齐次方程的通解。

第9题:

设y1(x)、y2(x)是二阶常系数线性微分方程y″+py′+qy=0的两个线性无关的解,则它的通解为______.


答案:
解析:
由二阶线性常系数微分方程解的结构可知所给方程的通解为其中C1,C2为任意常数.

第10题:

单选题
(2012)已知微分方程y′+p+(x)y=q(x)[q(x)≠0]有两个不同的特解y1(x),y2(x),则该微分方程的通解是:(c为任意常数)()
A

y=c(y1-y2)

B

y=c(y1+y2)

C

y=y1+c(y1+y2)

D

y=y1+c(y1-y2)


正确答案: D
解析: 暂无解析

更多相关问题