问答题设二阶线性微分方程y″+P(x)y′+Q(x)y=f(x)的三个特解是y1=x,y2=ex,y3=e2x,试求此方程满足条件y(0)=1,y′(0)=3的特解。

题目
问答题
设二阶线性微分方程y″+P(x)y′+Q(x)y=f(x)的三个特解是y1=x,y2=ex,y3=e2x,试求此方程满足条件y(0)=1,y′(0)=3的特解。
如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

设函数y(x)是微分方程满足条件y(0)=0的特解.
  (Ⅰ)求y(x);
  (Ⅱ)求曲线y=y(x)的凹凸区间及拐点.


答案:
解析:

第2题:

已知微分方程y'+p(x)y=q(x)[q(x)≠0]有两个不同的特解:y1(x),y2(x),则该微分方程的通解是:(c为任意常数)

A.y=c(y1-y2)
B.y=c(y1+y2)
C.y=y1+c(y1+y2)
D. y=y1+c(y1-y2)

答案:D
解析:
提示:y'+p(x)y=q(x),y1(x) -y2(x)为对应齐次方程的解。
微分方程y'+p(x)y=q(x)的通解为:y=y1+c(y1-y2)。

第3题:

微分方程y''+ay'2=0满足条件y x=0=0,y' x=0=-1的特解是:


答案:A
解析:
提示:本题为可降阶的高阶微分方程,按不显含变量x计算。设y'= P,y''=p',方程化为

条件,求出特解。

第4题:

单选题
(2012)已知微分方程y′+p+(x)y=q(x)[q(x)≠0]有两个不同的特解y1(x),y2(x),则该微分方程的通解是:(c为任意常数)()
A

y=c(y1-y2)

B

y=c(y1+y2)

C

y=y1+c(y1+y2)

D

y=y1+c(y1-y2)


正确答案: D
解析: 暂无解析

第5题:

设非齐次线性微分方程y′+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程通解是( )。

A.C[y1(x)-y2(x)]
B.y1(x)+C[y1(x)-y2(x)]
C.C[y1(x)+y2(x)]
D.y1(x)+C[y1(x)+y2(x)]

答案:B
解析:
因为y1(x),y2(x)是y′+P(x)y=Q(x)的两个不同的解,所以C(y1(x)-y2(x))是齐次方程y′+P(x)y=0的通解,进而y1(x)+C[y1(x)-y2(x)]是题中非齐次方程的通解。

第6题:

设非齐次线性微分方程y´+P(x)y=Q(x)有两个不同的解析:y1(x)与y2(x),C为任意常数,则该方程的通解是( ).

A.C[(y1(x)-y2(x)]
B.y1(x)+C[(y1(x)-y2(x)]
C.C[(y1(x)+y2(x)]
D.y1(x)+C[(y1(x)+y2(x)]

答案:B
解析:
y1(x)-y2(x)是对应的齐次方程y

第7题:

以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:

A. y''-2y'-3y=0
B. y''+2y'-3y=0
C. y''-3y'+2y=0
D. y''+2y'+y=0

答案:B
解析:
提示 y''-3y'+2y=0→r2+2r-3 = 0→r1=-3,r2=1,所以y1=ex,y2=e-3x,选项B的特解满足条件。

第8题:

已知y1(x)和y2(x)是方程y''+p(x)y'+Q(x)y=0的两个线性无关的特解, Y1(x)和Y2 (x)分别是方程y''+p(x)y'+Q(x)y=R1(x)和y''+p(x)y'+Q(x)y=R2(x)的特解。那么方程y''+p(x)y'+Q(x)y=R1(x)y+R2(x)的通解应是:
A. c1y1+c2y2B. c1Y1(x)+c2Y2(x)
C. c1y1+c2y2+Y1(x) D. c1y1+c2y2+Y1(x)+Y2(x)


答案:D
解析:
提示:按二阶线性非齐次方程通解的结构,写出对应二阶线性齐次方程的通解和非齐次方程的一个特解,得到非齐次方程的通解。

第9题:

已知y1(X)与y2(x)是方程:y" + P(x)y'+Q(x)y = 0的两个线性无关的特解,y1(x)和y2(x)分别是方程y"+P(x)y'+Q(x)y=R1(x)和y"+p(x)+Q(x)y=R2(x)的特解。那么方程y"+p(x)y'+Q(x)y=R1(x)+R2(x)的通解应是:

A. c1y1+c2y2
B. c1Y1(x) +c2Y2 (x)
C. c1y1+c2y2 +Y1(x)
D. c1y1+c2y2 +Y1 (x) +Y2 (x)

答案:D
解析:
提示:按二阶线性非齐次方程通解的结构,写出对应二阶线性齐次方程的通解和非齐次方程的一个特解,得到非齐次方程的通解。

第10题:

单选题
设函数y1,y2,y3都是线性非齐次方程y″+p(x)y′+q(x)y=f(x)的不相等的特解,则函数y=(1-c1-c2)y1+c1y2+c2y3(  )。(c1,c2为任意常数)
A

是所给方程的通解

B

不是方程的解

C

是所给方程的特解

D

可能是方程的通解,但一定不是其特解


正确答案: C
解析:
由于y1,y2,y3都是y″+p(x)y′+q(x)y=f(x)的不相等的特解,则y2-y1,y3-y1是它对应的齐次方程的特解,故y=(1-c1-c2)y1+c1y2+c2y3=y1+c1(y2-y1)+c2(y3-y1)是非齐次方程y″+p(x)y′+q(x)y=f(x)的解,但是,由于无法确定y2-y1与y3-y1是否为线性无关,故不能肯定它是y″+p(x)y′+q(x)y=f(x)的通解。

更多相关问题