单选题设在区间(-∞,+∞)内函数f(x)>0,且当k为大于0的常数时有f(x+k)=1/f(x)则在区间(-∞,+∞)内函数f(x)是(  )。A 奇函数B 偶函数C 周期函数D 单调函数

题目
单选题
设在区间(-∞,+∞)内函数f(x)>0,且当k为大于0的常数时有f(x+k)=1/f(x)则在区间(-∞,+∞)内函数f(x)是(  )。
A

奇函数

B

偶函数

C

周期函数

D

单调函数

参考答案和解析
正确答案: C
解析:
对该函数由f(x+2k)=1/f(x+k)=f(x),故f(x)是周期函数。
如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

设f(x)为连续函数,F(x)是f(x)的原函数,则( )。

(A) 当f(x)是奇函数时,F(x)必为偶函数

(B) 当f(x)是偶函数时,F(x)必为奇函数

(C) 当f(x)是周期函数时,F(x)必为周期函数

(D) 当f(x)是单增函数时,F(x)必为单增函数

(E) 当f(x)是单减函数时,F(x)必为单减函数


正确答案:A

第2题:

(3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是

(A)若f(x) 是偶函数,则f(-x)是偶函数

(B)若f(x)不是奇函数,则f(-x)不是奇函数

(C)若f(-x)是奇函数,则f(x)是奇函数

(D)若f(-x)不是奇函数,则f(x)不是奇函数


正确答案:B

第3题:

若f(x)为奇函数,φ(x)为偶函数,f[φ(x)]且有意义,则f[φ(x)]是()

A、偶函数

B、奇函数

C、非奇非偶函数

D、可能是奇函数也可能是偶函数


参考答案:A

第4题:

,则:

A.f(x)为偶函数,值域为(-1,1)
B.f(x)为奇函数,值域为(-∞,0)
C.f(x)为奇函数,值域为(-1,1)
D.f(x)为奇函数,值域为(0,+∞)

答案:C
解析:

第5题:

函数f(x)的导函数f'(x)的图像如右图所示,则在(-∞,+∞)内f(x)的单调递增区间是()

A.(-∞,0)
B.(-∞,1)
C.(0,+∞)
D.(1,+∞)

答案:B
解析:
因为x在(-∞,1)上,f'(x)>0,f(x)单调增加,故选B.

第6题:

请教:2008 年春季中国精算师资格考试-01数学基础(一)第1大题第1小题如何解答?

【题目描述】

1.设f(x)为连续函数,F(x)是f(x)的原函数,则( )。

(A) 当f(x)是奇函数时,F(x)必为偶函数

(B) 当f(x)是偶函数时,F(x)必为奇函数

(C) 当f(x)是周期函数时,F(x)必为周期函数

(D) 当f(x)是单增函数时,F(x)必为单增函数

(E) 当f(x)是单减函数时,F(x)必为单减函数

 


正确答案:A

第7题:

设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0,
则在(- ∞ ,0)内必有:
(A) f ' > 0, f '' > 0 (B) f ' 0
(C) f ' > 0, f ''


答案:B
解析:
解:选 B。
偶函数的导数是奇函数,奇函数的导数是偶函数。
f (x)是偶函数,则 f '(x)是奇函数,当x > 0时, f '(x) > 0,则x f '(x)是奇函数,则 f ''(x)是奇函数,当x > 0时, f '(x) > 0,则x 0;
点评:偶函数的导数是奇函数,奇函数的导数是偶函数。

第8题:

若f(x)为(-∞,+∞)上的任意函数,则F(x)=f(x)-f(-x)是()

A、偶函数

B、奇函数

C、非奇非偶函数

D、F(x)≡0


参考答案:B

第9题:

设F(x)是连续函数f(x)的一个原函数,表示“M的充分必要条件是N”,则必有

AF(x)是偶函数f(x)是奇函数
BF(x)是奇函数f(x)是偶函数
CF(x)是周期函数f(x)是周期函数
DF(x)是单调函数f(x)是单调函数


答案:A
解析:

第10题:

设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:

A. f'(x)>0, f''(x)>0
B.f'(x)<0, f''(x)>0
C. f'(x)>0, f''(x)<0
D. f'(x)<0, f''(x)<0

答案:B
解析:
提示 已知f(x)在(-∞,+∞)上是偶函数,函数图像关于y轴对称,已知函数在(0,+∞),f'(x)>0, f''(x)>0,表明在(0,+∞)上函数图像为单增且凹向,由对称性可知,f(x)在(-∞,0)单减且凹向,所以f'(x)<0, f''(x)>0。

更多相关问题