已知圆22+y2+4x-8y+11=0,经过点P(1,o)作该圆的切线,切点为Q,则线段PQ的长为 ( )A.10B.4C.16D.8

题目

已知圆22+y2+4x-8y+11=0,经过点P(1,o)作该圆的切线,切点为Q,则线段PQ的长为 ( )

A.10

B.4

C.16

D.8

如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

如图:已知圆0,点P在圆外,D,E在圆上,PE交圆于C,PD与圆相切,G为CE上一点且满足PG=PD,连接DG并延长交圆于A,作弦AB⊥EP,垂足为F。

(1)求证:AB为圆的直径;
(2)若AC=BD,AB=5,求弦DE的长。


答案:
解析:
(1)证明:∵PG=PD,∴∠PGD=∠PDG,又∵∠AGF=∠PGD,∠PDG=∠ABD,∴∠AGF=∠ABD,∴∠ADB=∠AFP=90°,∴AB为圆的直径。

第2题:

如右图,已知直线AB是⊙O的切线,A为切点,OB交⊙O于点C,点D在⊙0上,且∠OBA=40°,则∠ADC=_______.



答案:
解析:

第3题:

已知点A(-4,2),B(0,o),则线段AB的垂直平分线的斜率为 ( )

A.A

B.B

C.C

D.D


正确答案:D
本题主要考查的知识点为线段垂直平分线的斜率.【应试指导】

第4题:

如图⊙O和⊙O’相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连接DB并延长交⊙O于点E.证明:

(1)AC?BD=AD?AB;
(2)AC=AE.


答案:
解析:


第5题:

已知圆过A(1,3),B(5,1)两点,且圆心在y轴上,则圆的标准方程为__________。


答案:
解析:

第6题:

如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方)且AB=2,则圆C在点8处的切线在x轴上的截距_________。


答案:
解析:

解析:连接BC,CT,设半径为r,由于T为切点,所以CT⊥x轴,点C到AB的距离为1,

第7题:

过抛物线y2=4x的焦点,作直线与此抛物线相交于两点P和Q,那么线段PQ中点的轨迹方程是(  ).


答案:B
解析:
(筛选法)由已知可知轨迹曲线经过点(1,0),开口向右,由此排除答案A、C、D,所以选B.

第8题:

如图.已知圆⊙O是△ABC的外接圆,AD是圆⊙0的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB。

(1)求证:BE是⊙0的切线;
(2)若BC=√3,AC=5,求圆的直径AD及切线BE的长。


答案:
解析:
(1)连接OB,∵AD是圆⊙O的直径'∴∠OBD+∠EBD=90°, ∵BD=BC,∴其劣弧所对的圆周角相等,即∠CAB=∠BAD,
∵AO=BO,∴∠BAD=∠ABO,
又∠EBD=∠CAB,∴∠EBD=ABO,∴∠OBD+∠ABO=90°,∴∠OBE=90°,
∵B0是圆的半径,∴BE是⊙O的切线。
(2)设圆的半径为r,连接CD交OB于F,

设圆的半径为R,连接CD,.

第9题:

如下图所示,已知线段DE与AC平行,且与圆的半径相等,都为3厘米,0为圆的圆心。求图中阴影部分的面积。(π取3.14)


答案:
解析:

第10题:

已知圆的方程为x2+y2-2x+4y+1=0,则圆上一点到直线3x+4y-10=0的最大距离为(  )

A.6
B.5
C.4
D.3

答案:B
解析:

更多相关问题