设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。

题目
设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。

A.r=n
B.r<n
C.r≥n
D.r>n
如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解


答案:对
解析:

第2题:

设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为 矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A) 秩(B); ② 若秩(A) 秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解


A.① ②
B.① ③
C.② ④
D.③ ④


答案:B
解析:

第3题:

设n元齐次线性方程组AX=O只有零解,则秩(A)=()。


答案:n或未知量个数

第4题:

非齐次线性方程组Ax=B中未知变量的个数为n,方程的个数为m,系数矩阵A的秩为r,则下列说法正确的是( )。


答案:D
解析:
非齐次方程组解的判定需要验证r(A)是否等于r(A,b),A,B,C都无法判断。D项:r=m时,r(A)=r(A,b)=m,方程组必有解.

第5题:

设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。

A.若Ax=0仅有零解,则Ax=b有惟一解
B.若Ax=0有非零解,则Ax=b有无穷多个解
C.若Ax=b有无穷多个解,则Ax=0仅有零解
D.若Ax=b有无穷多个解,则Ax=0有非零解

答案:D
解析:

第6题:

设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为矩阵,现有4个命题:① 若Ax=0的解均是Bx=0的解,则秩(A)秩(B);② 若秩(A)秩(B),则Ax=0的解均是Bx=0的解;③ 若Ax=0与Bx=0同解,则秩(A)=秩(B);④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解,以上命题中正确的是

A.① ②
B.① ③
C.② ④
D.③ ④

答案:B
解析:

第7题:

非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则

A.r=m时,方程组A-6有解.
B.r=n时,方程组Ax=b有唯一解.
C.m=n时,方程组Ax=b有唯一解.
D.r

答案:A
解析:
因为A是m×n矩阵,若秩r(A)=m,则m=r(A)≤r(A,b)≤m.于是r(A)=r(A,b).故方程组有解,即应选(A).或,由r(A)=m,知A的行向量组线性无关,那么其延伸必线性无关,故增广矩阵(A,b)的m个行向量也是线性无关的,亦知r(A)=r(A,b).关于(B)、(D)不正确的原因是:由r(A)=n不能推导出r(A,b)=n(注意A是m×n矩阵,m可能大于n),由r(A)=r亦不能推导出r(A,b)=r,你能否各举一个简单的例子?至于(C),由克拉默法则,r(A)=n时才有唯一解,而现在的条件是r(A)=r,因此(C)不正确,

第8题:

设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是()

A、Ax=0只有零解

B、Ax=0的基础解系含r(A)个解向量

C、Ax=0的基础解系含n-r(A)个解向量

D、Ax=0没有解


参考答案:C

第9题:

设有齐次线性方程组Ax=0和Bx=0,其中A,B均m×n矩阵,现有4个命题:
  ①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);
  ②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;
  ③若Ax=0与Bx=0同解,则秩(A)=秩(B);

  ④若秩(A)=秩(B)则Ax=0与Bx=0同解;

  以上命题中正确的是

A.①②.
B.①③.
C.②④.
D.③④,

答案:B
解析:
显然命题④错误,因此排除(C)、(D).对于(A)与(B)其中必有一个正确,因此命题①必正确,那么②与③哪一个命题正确呢?由命题①,“若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B)”正确,知“若Bx=0的解均是Ax=0的解,则秩(B)≥秩(A)”正确,可见“若Ax=0与Bx=0同解,则秩(A)=秩(B)”正确.即命题③正确,故应选(B).

第10题:

非齐线性方程组AX=b中未知量的个数为n,方程的个数为m,系数矩阵A的秩为r,则( )。

A 当r=m时,方程组AX=b有解
B 当r=n时,方程组AX=b有惟一解
C 当m=n时,方程组AX=b有惟一解
D 当r<n时,方程组AX=b有无穷多解

答案:A
解析:
系数矩阵A是m×n矩阵,增个矩阵B是m×(n+1)矩阵当R(A)=r=m时,由于R(B)≥R(A)=m,而B仅有m行,故有R(B)≤m,从而R(B)=m,即R(A)=R(B),方程组有解

更多相关问题