设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A、①②B、①③C、②④D、③④

题目

设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。

  • A、①②
  • B、①③
  • C、②④
  • D、③④
如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。

A.若Ax=0仅有零解,则Ax=b有惟一解
B.若Ax=0有非零解,则Ax=b有无穷多个解
C.若Ax=b有无穷多个解,则Ax=0仅有零解
D.若Ax=b有无穷多个解,则Ax=0有非零解

答案:D
解析:

第2题:

设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为 矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A) 秩(B); ② 若秩(A) 秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解


A.① ②
B.① ③
C.② ④
D.③ ④


答案:B
解析:

第3题:

设A为m*n矩阵,则有()。

A、若mn,则有ax=b无穷多解

B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;

C、若A有n阶子式不为零,则Ax=b有唯一解;

D、若A有n阶子式不为零,则Ax=0仅有零解。


参考答案:D

第4题:

设有齐次线性方程组Ax=0和Bx=0,其中A,B均m×n矩阵,现有4个命题:
  ①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);
  ②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;
  ③若Ax=0与Bx=0同解,则秩(A)=秩(B);

  ④若秩(A)=秩(B)则Ax=0与Bx=0同解;

  以上命题中正确的是

A.①②.
B.①③.
C.②④.
D.③④,

答案:B
解析:
显然命题④错误,因此排除(C)、(D).对于(A)与(B)其中必有一个正确,因此命题①必正确,那么②与③哪一个命题正确呢?由命题①,“若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B)”正确,知“若Bx=0的解均是Ax=0的解,则秩(B)≥秩(A)”正确,可见“若Ax=0与Bx=0同解,则秩(A)=秩(B)”正确.即命题③正确,故应选(B).

第5题:

设矩阵A与B等价,则必有( )

A.A的行向量与B的行向量等价
B.A的行向量与B的行向量等价
C.Ax=0与Bx=0同解
D.Ax=0与Bx=0的基础解系中向量个数相同

答案:D
解析:

第6题:

若AX=65ACH,BX=0B79EH,则()

A.执行ADD.AX,BX指令后,CF=1,OF=1
B.执行SUB.AX,BX指令后,SF=1,OF=0
C.执行TESTBX,AX指令后,CF=0,OF=0
D.执行XORAX,BX指令后,PF=1,IF=0

答案:A
解析:

第7题:

设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为矩阵,现有4个命题:① 若Ax=0的解均是Bx=0的解,则秩(A)秩(B);② 若秩(A)秩(B),则Ax=0的解均是Bx=0的解;③ 若Ax=0与Bx=0同解,则秩(A)=秩(B);④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解,以上命题中正确的是

A.① ②
B.① ③
C.② ④
D.③ ④

答案:B
解析:

第8题:

设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是()

A、Ax=0只有零解

B、Ax=0的基础解系含r(A)个解向量

C、Ax=0的基础解系含n-r(A)个解向量

D、Ax=0没有解


参考答案:C

第9题:

若非齐次线性方程组中,方程的个数少于未知量的个数,则下列结论中正确的是:

A.AX=0仅有零解
B.AX=0必有非零解
C.AX=0 —定无解
D.AX=b必有无穷多解

答案:B
解析:
提示Ax=0必有非零解。
解方程Ax=0时,对系数矩阵进行行的初等变换,必有一非零的r阶子式,而未知数的个数n,n>r,基础解系的向量个数为n-r,所以必有非零解。

第10题:

设A,B都是N阶矩阵,且存在可逆矩阵P,使得AP=B,则().

A.A,B合同
B.A,B相似
C.方程组AX=0与BX=0同解
D.r(A)=r(B)

答案:D
解析:
因为P可逆,所以r(A)=r(B),选(D).

更多相关问题