问题:给定插值点(xi,fi)(i=0,1,...,n)可分别构造Lagrange插值多项式和Newton插值多项式,它们是否相同?为什么?它们各有何优点?
查看答案
问题:设x1=1.216,x2=3.654均具有3位有效数字,则x1x2的相对误差限为()
问题:若x=e≈2.71828=x*,则x有()位有效数字,其绝对误差限为()。
问题:设A为n阶非奇异矩阵且有分解式A=LU,其中L为单位下三角阵,U为上三角阵,求证A的所有顺序主子式均不为零。
问题:解方程组Ax=b的简单迭代格式x(k+1)=Bx(k)+g收敛的充要条件是()A、ρ(A)<1B、ρ(B)<1C、ρ(A)>1D、ρ(B)>1
问题:比较求ex+10x-2=0的根到三位小数所需的计算量;1)在区间[0,1]内用二分法;2)用迭代法xk+1=(2-exk)/10,取初值x0=0。
问题:如果用二分法求方程x3+x-4=0在区间[1,2]内的根精确到三位小数,需对分()次。
问题:设f(x)=4x5+2x4+3x2+1和节点xk=k/2,k=0,1,2...则f[x0,x1,...x5]=()
问题:设x*的相对误差为2%,求(x*)n的相对误差()
问题:设数据x1,x2,x3的绝对误差为0.002,那么x1-x2-x3的绝对误差约为()。
问题:设x*=2.3149541...,取5位有效数字,则所得的近似值x=()。
问题:已知数e=2.718281828...,取近似值x=2.7182,那么x具有的有效数字是()。
问题:舍入误差是()产生的误差。A、只取有限位数B、模型准确值与用数值方法求得的准确值C、观察与测量D、数学模型准确值与实际值
问题:用1+x近似表示ex所产生的误差是()误差。A、模型B、观测C、截断D、舍入
问题:用二分法和牛顿法求x-tgx=0的最小正根。
问题:用二分法求方程f(x)=x3+x-1=0在区间[0,1]内的根,进行一步后根的所在区间为(),进行两步后根的所在区间为()。